Greater Bandicoot Rats (Bandicota indica) are Not Native to Sundaland Based on Deoxyribonucleic Acid (DNA) Analyses

Abstract

Bandicoot rats (genus Bandicota) are distributed widely across the Indomalay biogeographic realm of tropical East Asia. One widely distributed species, the greater bandicoot rat (Bandicota indica), has a disjunct distribution including both north and south of the biogeographic break at the Isthmus of Kra. We compared genetic variation of greater bandicoot rats from north and south of the Isthmus of Kra using mitochondrial cytochrome b (cyt b, 1140 bp) and nuclear interphotoreceptor retinoid binding protein (IRBP, 801 bp) sequences. We found that the greater bandicoot rat (B. indica) is not native to Sundaland, the region south of the Isthmus of Kra. The species was introduced to the region recently as the genetic divergence with other regions is very low and phylogenies of both genes showed Malaysian greater bandicoot rat very closely related to conspecifics from Lao PDR. Haplotype data revealed all individuals from Malaysia are homogenous, which implied that the species was introduced recently. The greater bandicoot rats in Malaysia are so far only reported in the rice producing regions of Kedah and Perlis, but they may be increasing in number and distribution. A more detailed survey on the distribution and population demographics of Malaysian greater bandicoot rats are needed to support a management plan for this invasive species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Sequences have been submitted to GenBank, accession numbers in Table 2.

References

  1. Amzah B, Hussain Y, Abdullah S (2011) Pengurusan tikus sawah padi di Malaysia (Management of rice field rat in Malaysia). Buletin Teknol Tanaman 8:1-10

    Google Scholar 

  2. Aplin KP, Brown PR, Jacobs J, Krebs CJ, Singleton GR (2003) Field methods for rodent studies in Asia and the Indo-Pacific. ACIAR Monograph No100, Australian Centre for International Agricultural Research, Canberra, pp 223

  3. Aplin KP, Lunde D, Molur S (2016) Bandicota indica (errata version published in 2017) The IUCN Red List of Threatened Species 2016: e.T2541A115062578

  4. Aplin KP, Suzuki H, Chinen AA, Chesser RT, Have Jt, Donnellan SC, Austin J, Frost A, Gonzalez JP, Herbreteau V, Catzeflis F, Soubrier J, Fang YP, Robins J, Matisoo-Smith E, Bastos ADS, Maryanto I, Sinaga MH, Denys C, Bussche RAVD, Conroy C, Rowe K, Cooper A (2011) Multiple geographic origins of commensalism and complex dispersal history of black rats. PloS ONE 6:11

    Google Scholar 

  5. Best TL, Schnell GD (1974) Bacular variation in kangaroo rats (genus Dipodomys). Am Mid Nat 91:257-270

    Google Scholar 

  6. Brandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37-48

    Google Scholar 

  7. Burhanuddin M, Noor HM (2019) Preliminary study of bandicoot rat population in paddy field, Kedah. International Journal of Agriculture, Forestry and Plantation 8: 70-74

    Google Scholar 

  8. Corbet GB, Hill JE (1992) The Mammals of the Indomalayan Region: A Systematic Review. Oxford University Press, New York, pp 484

    Google Scholar 

  9. Chaimanee Y (1997) Les rongeurs du Plio-Pleistocene de Thailande: systematique, phylogenie, biochronologie et palaeoenvironments, Unpublished Thesis, Université Montpellier II, Montpellier

  10. Chaimanee Y, Jaeger JJ (2001) Evolution of Rattus (Mammalia, Rodentia) during Plio-Pleistocene in Thailand. Hist Biol 15:181-191

    Google Scholar 

  11. Dejtaradol A, Renner SC, Karapan S, Bates PJJ, Moyle RG, Päckert M (2015) Indochinese-Sundaic faunal transition and phylogeographical divides north of the Isthmus of Kra in Southeast Asian Bulbuls (Aves: Pycnonotidae). J Biogeogr 43:3

    Google Scholar 

  12. Francis CM (2008) A Field Guide to the Mammals of Thailand and South-East Asia. New Holland Publishers, London, pp 392

    Google Scholar 

  13. Herbreteau V, Gonzalez J, Andrianas PK, Hugot J (2005) Mapping the potential distribution of Bandicota indica, vector of zoonoses in Thailand, by use of remote sensing and geographic information systems (a case of Nakhon Pathom province). The Natural History Journal of Chulalongkorn University 5:61-67

    Google Scholar 

  14. Huelsenbeck JP, Ronquist FR (2001) Mr Bayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755

    CAS  Google Scholar 

  15. Hussain I, Prescott CV (2003) Warfarin susceptibility in the lesser bandicoot rat (Bandicota bengalensis). Conference: Rats, Mice and People: Rodent Biology and Management. Australian Centre for International Development, Canberra, pp. 465–468

  16. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of cytochrome b gene of mammals. J Mol Evol 32:128-144

    CAS  PubMed  Google Scholar 

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870-1874

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lekagul B, Mcneely JA (1988) Mammals of Thailand. Association for the Conservation of Wildlife, Bangkok, pp 758

    Google Scholar 

  19. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452

    CAS  PubMed  Google Scholar 

  20. Liat LB (2015) The field rats and field mouse in Malaysia and Southeast Asia. UTAR Agricultural Sci J 1:3

    Google Scholar 

  21. Musser GG, Brothers EM (1994) Identification of bandicoot rats from Thailand (Bandicota, Muridae, Rodentia). Am Mus Novitates 3110:1-56

    Google Scholar 

  22. Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DR (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed. John Hopkins University Press, Baltimore pp. 894-1531

    Google Scholar 

  23. Musser GG, Newcomb C (1983) Malaysian murids and the giant rat of Sumatra. Bull Am Mus Nat Hist 174:327-598

    Google Scholar 

  24. Myers N, Mittermeier RA, Mittermeir CG, Fonseca GAB, Kent J (2000) Biodiversity hotspot for conservation priorities. Nature 403:853-858

    CAS  PubMed  Google Scholar 

  25. Parshad VR, Kochar JK (1995) Potential of three rodenticides to induces conditioned aversion to their baits in the Indian mole rat Bandicota bengalensis. Appl Anim Behav Sci 45:267-276

    Google Scholar 

  26. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitutions. Bioinformatics 14:817-818

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pagès M, Chaval Y, Herbreteau V, Waengsothorn S, Cosson JF, Hugot JP, Morand S, Michaux J (2010) Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol Biol 10:184

    PubMed  PubMed Central  Google Scholar 

  28. Sharma MS (2018) Oh rats! They’re eating away at our rice. TheStar. https://www.thestar.com.my/news/nation/2018/08/01/oh-rats-theyre-eating-away-at-our-rice. Accessed 14 July 2020

  29. Shukor MI, ZainalAbidin CMR, Hamid NH (2018) Greater bandicoot rat, Bandicota indica Infestation in Oil Palm Plantation and Its Management. Planter 94:100-110

    Google Scholar 

  30. Singleton GR, Petch DA (1994) A Review of the Biology and Management of Rodent Pests in Southeast Asia. Australian Centre for International Agricultural Research, 17 pp

  31. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Verneau O, Catzeflis F, Furano AV (1997) Determination of the evolutionary relationships in Rattus sensu lato (Rodentia: Muridae) using L1 amplification events. J Mol Evol 45:442-444

    Google Scholar 

  33. William-Dee J, Anwarali Khan FA, Rosli Q, Morni MA, Azhar I, Lim LS, Tingga RCT, Rahman MRA (2019) Comparative Distribution of Small Mammals Diversity in Protected and Non-Protected Area of Peninsular Malaysia. Trop Life Sci Res 30:2

    Google Scholar 

  34. Wilson DE, Reeder DM (2005) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed Johns Hopkins University Press, Baltimore, pp 2142

    Google Scholar 

  35. Wood BJ, Fee CG (2003) A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Protection 22:445-461

    Google Scholar 

  36. Woodruff DS, Turner LM (2009) The Indochinese-Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributions. J Biogeogr 36:803-821

    Google Scholar 

  37. Yasuda SP, Gamage CD, Koizumi N, Nishio S, Isozumi R, Shimizu K, Koma T, Amada T, Suzuki H, Yoshimatsu K, Arikawa J (2014) Distinct genetic characteristics of Sri Lankan Rattus and Bandicota (Murinae, Rodentia) inferred from mitochondrial and nuclear markers. Genes Genet Syst 89:71-80

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a University of Malaya research grant (BKS031-2017), postgraduate research fund, PPP (PG061-2016A), and the Spanish Research Council (CGL2017-86068-P). We acknowledge University of Malaya for providing funding, facilities, and assistances. We thank the Museum of Zoology of University of Malaya for their permission for data collection and the Department of Wildlife and National Parks Peninsular Malaysia for their authorization. We also thank the staff of Institute of Biological Sciences (ISB), Faculty of Science for their assistance throughout the sample collection. Molecular work was performed at the Animal Genetics and Genome Evolutionary Laboratory, Institute of Biological Sciences, Faculty of Sciences, University of Malaya. A special thanks to the team members during data collection, especially Muhammad Syahmi bin Ibrahim for their help and support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohamad Azam Firdaus Saarani or Hasmahzaiti Omar.

Appendix 1 

Appendix 1 

External measurements (in mm) of greater bandicoot rats from Malaysia with field numbers, haplotype distribution based on cyt b and IRBP, sexes, captured locations and dates and ranges of age; juvenile (J), sub-adult (SA) and adult(A).

Field numbers Haplotype distribution Sex Localities Trapping date Age Morphological data measurements (mm)
Cyt b IRBP Hb T E Hf Ff Weight (g)
ASK1 Hap 1 Hap 1 M Alor Setar, Kedah 7/3/2018 A 300 220 28.0 52 26 912
ASK2 Hap 1 - F Alor Setar, Kedah 7/3/2018 A 279 224 30.0 53 25 838
ASK3 Hap 1 Hap 1 F Alor Setar, Kedah 7/3/2018 A 295 193 30.8 49 25 686
ASK4 Hap 1 Hap 1 F Alor Setar, Kedah 8/3/2018 J 253 203 27.4 49 23 460
TTP01 Hap 1 Hap 1 F Tambun Tulang, Perlis 8/3/2018 A 348 242 28.5 54 27 759
TTP02 Hap 1 Hap 1 F Tambun Tulang, Perlis 8/3/2018 A 302 216 23.1 51 25 444
TTP03 Hap 1 - M Tambun Tulang, Perlis 8/3/2018 SA 293 200 25.4 48 24 589
TTP04 Hap 1 - M Tambun Tulang, Perlis 8/3/2018 J 252 189 22.8 51 27 303
TTP05 Hap 1 - M Tambun Tulang, Perlis 8/3/2018 J 196 179 23.2 50 25 249
TTP06 Hap 1 Hap 2 F Tambun Tulang, Perlis 9/3/2018 J 214 184 23.8 47 22 319
TTP07 Hap 1 Hap 2 M Tambun Tulang, Perlis 9/3/2018 J 220 172 27.1 48 24 218
TTP08 Hap 1 Hap 2 F Tambun Tulang, Perlis 9/3/2018 SA 321 184 28.3 49 25 578
TTP09 Hap 1 Hap 1 M Tambun Tulang, Perlis 10/3/2018 J 235 138 27.4 49 26 337
TTP010 Hap 1 Hap 2 M Tambun Tulang, Perlis 11/3/2018 J 238 186 26.2 50 24 312
TTP011 Hap 1 Hap 2 F Tambun Tulang, Perlis 12/3/2018 SA 287 226 29.2 53 25 587

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saarani, M.A.F., Leonard, J.A., Md-Zain, B.M. et al. Greater Bandicoot Rats (Bandicota indica) are Not Native to Sundaland Based on Deoxyribonucleic Acid (DNA) Analyses. J Mammal Evol (2021). https://doi.org/10.1007/s10914-020-09535-4

Download citation

Keywords

  • Introduced species
  • Sundaland
  • Isthmus of kra
  • Genetic divergence
  • Indochina