Skip to main content

Advertisement

Log in

Ret Receptor Has Distinct Alterations and Functions in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Ret receptor tyrosine kinase is a proto-oncogene that participates in development of various cancers. Several independent studies have recently identified Ret as a key player in breast cancer. Although Ret overexpression and function have been under investigation, mainly in estrogen receptor positive breast cancer, a more comprehensive analysis of the impact of recurring Ret alterations in breast cancer is needed. This review consolidates the current knowledge of Ret alterations and their potential effects in breast cancer. We discuss and integrate data on Ret changes in different breast cancer subtypes and potential function in progression, as well as the participation of distinct Ret network signaling partners in these processes. We propose that it will be essential to define a shared molecular feature of tumors with alteration in Ret receptor, be this at the genetic level or via overexpression in order to design effective therapies to target the Ret pathway. Here we review experimental evidence from basic research and pre-clinical studies concentrating on Ret alterations as potential biomarkers for recurrence, and we discuss the possibility that targeting the Ret pathway might in the future become a treatment for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ARTN:

artemin

COSMIC:

Catalogue of Somatic Mutations In Cancer

E2 :

estrogen

ER :

estrogen receptor

ERE:

estrogen response element

GDNF:

glial-derived neurotrophic factor

GFL:

glial-derived neurotrophic factor family ligand

GFRa:

GDNF family a co-receptor

NRTN:

neurturin

NSCLC:

non-small cell lung adenocarcinoma

PDX:

patient derived xenograft

PR:

progesterone receptor

PRSN:

presephin

Ret:

REarragement during Transfection

RTK:

receptor tyrosine kinase

TCGA:

The Cancer Genome Atlas

TK:

tyrosine kinase

TN:

triple negative

WT:

wild type

Y:

tyrosine residue

References

  1. Ibanez CF. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol. 2013;5(2).

  2. Trupp M, Raynoschek C, Belluardo N, Ibáñez CF. Multiple GPI-anchored receptors control GDNF-dependent and independent activation of the c-ret receptor tyrosine kinase. Mol Cell Neurosci. 1998;11(1–2):47–63.

    Article  CAS  PubMed  Google Scholar 

  3. Morandi A, Plaza-Menacho I, Isacke CM. RET in breast cancer: functional and therapeutic implications. Trends Mol Med. 2011;17(3):149–57.

    Article  CAS  PubMed  Google Scholar 

  4. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14(3):173–86.

    Article  CAS  PubMed  Google Scholar 

  5. Myers SM, Eng C, Ponder BA, Mulligan LM. Characterization of RET proto-oncogene 3′ splicing variants and polyadenylation sites: a novel C-terminus for RET. Oncogene. 1995;11(10):2039–45.

    CAS  PubMed  Google Scholar 

  6. Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 2001;12(4):361–73.

    Article  CAS  PubMed  Google Scholar 

  7. de Graaff E, Srinivas S, Kilkenny C, D'Agati V, Mankoo BS, Costantini F, et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 2001;15(18):2433–44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Crupi MJ, Yoganathan P, Bone LN, Lian E, Fetz A, Antonescu CN, et al. Distinct temporal regulation of RET isoform internalization: roles of Clathrin and AP2. Traffic. 2015;16(11):1155–73.

    Article  CAS  PubMed  Google Scholar 

  9. Hyndman BD, Crupi MJF, Peng S, Bone LN, Rekab AN, Lian EY, et al. Differential recruitment of E3 ubiquitin ligase complexes regulates RET isoform internalization. J Cell Sci. 2017;130(19):3282–96.

    Article  CAS  PubMed  Google Scholar 

  10. Lian EY, Maritan SM, Cockburn JG, Kasaian K, Crupi MJ, Hurlbut D, et al. Differential roles of RET isoforms in medullary and papillary thyroid carcinomas. Endocr Relat Cancer. 2017;24(1):53–69.

    Article  CAS  PubMed  Google Scholar 

  11. Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993;119(4):1005–17.

    CAS  PubMed  Google Scholar 

  12. Schuchardt A, et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor ret. Nature. 1994;367(6461):380–3.

    Article  CAS  PubMed  Google Scholar 

  13. Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. 1994;266(5187):1062–4.

    Article  CAS  PubMed  Google Scholar 

  14. Jain S. The many faces of RET dysfunction in kidney. Organogenesis. 2009;5(4):177–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Damon DH, Teriele JA, Marko SB. Vascular-derived artemin: a determinant of vascular sympathetic innervation? Am J Physiol Heart Circ Physiol. 2007;293(1):H266–73.

    Article  CAS  PubMed  Google Scholar 

  16. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol. 2005;279(1):114–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2004;101(47):16489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Linher K, Wu D, Li J. Glial cell line-derived neurotrophic factor: an intraovarian factor that enhances oocyte developmental competence in vitro. Endocrinology. 2007;148(9):4292–301.

    Article  CAS  PubMed  Google Scholar 

  19. Fielder GC, Yang TW, Razdan M, Li Y, Lu J, Perry JK, et al. The GDNF family: a role in Cancer? Neoplasia. 2018;20(1):99–117.

    Article  CAS  PubMed  Google Scholar 

  20. Chiariello M, Visconti R, Carlomagno F, Melillo RM, Bucci C, de Franciscis V, et al. Signalling of the ret receptor tyrosine kinase through the c-Jun NH2-terminal protein kinases (JNKS): evidence for a divergence of the ERKs and JNKs pathways induced by ret. Oncogene. 1998;16(19):2435–45.

    Article  CAS  PubMed  Google Scholar 

  21. Garcia TX, et al. The NOTCH ligand JAG1 regulates GDNF expression in Sertoli cells. Stem Cells Dev. 2017;26(8):585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tufro A, Teichman J, Banu N, Villegas G. Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochem Biophys Res Commun. 2007;358(2):410–6.

    Article  CAS  PubMed  Google Scholar 

  23. Fukuda T, Kiuchi K, Takahashi M. Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J Biol Chem. 2002;277(21):19114–21.

    Article  CAS  PubMed  Google Scholar 

  24. Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol. 2018;15(3):150.

    Article  PubMed  Google Scholar 

  25. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60(4):557–63.

    Article  CAS  PubMed  Google Scholar 

  26. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–81.

    Article  CAS  PubMed  Google Scholar 

  28. Paratala BS, Chung JH, Williams CB, Yilmazel B, Petrosky W, Williams K, et al. RET rearrangements are actionable alterations in breast cancer. Nat Commun. 2018;9(1):4821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gattelli A, García Solá ME, Roloff TC, Cardiff RD, Kordon EC, Chodosh LA, et al. Chronic expression of wild-type ret receptor in the mammary gland induces luminal tumors that are sensitive to ret inhibition. Oncogene. 2018;37(29):4046–54.

    Article  CAS  PubMed  Google Scholar 

  30. Gattelli A, et al. Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol Med. 2013.

  31. Plaza-Menacho I, Morandi A, Robertson D, Pancholi S, Drury S, Dowsett M, et al. Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene. 2010;29(33):4648–57.

    Article  CAS  PubMed  Google Scholar 

  32. Vareslija D, et al. Transcriptome characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets. J Natl Cancer Inst. 2019;111(4):388–98.

    Article  CAS  PubMed  Google Scholar 

  33. Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  34. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54.

    Article  CAS  PubMed  Google Scholar 

  35. Hynes NE, Watson CJ. Mammary gland growth factors: roles in normal development and in cancer. Cold Spring Harb Perspect Biol. 2010;2(8):a003186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9(9):631–43.

    Article  CAS  PubMed  Google Scholar 

  37. Boulay A, Breuleux M, Stephan C, Fux C, Brisken C, Fiche M, et al. The ret receptor tyrosine kinase pathway functionally interacts with the ERalpha pathway in breast cancer. Cancer Res. 2008;68(10):3743–51.

    Article  CAS  PubMed  Google Scholar 

  38. Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS, et al. A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res. 2007;67(24):11732–41.

    Article  CAS  PubMed  Google Scholar 

  39. Hatem R, Labiod D, Château-Joubert S, de Plater L, el Botty R, Vacher S, et al. Vandetanib as a potential new treatment for estrogen receptor-negative breast cancers. Int J Cancer. 2016;138(10):2510–21.

    Article  CAS  PubMed  Google Scholar 

  40. Mechera R, Soysal SD, Piscuoglio S, Ng CKY, Zeindler J, Mujagic E, et al. Expression of RET is associated with Oestrogen receptor expression but lacks prognostic significance in breast cancer. BMC Cancer. 2019;19(1):41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Morandi A, et al. GDNF-RET signaling in ER-positive breast cancers is a key determinant of response and resistance to aromatase inhibitors. Cancer Res. 2013;73(12):3783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tozlu S, Girault I, Vacher S, Vendrell J, Andrieu C, Spyratos F, et al. Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription-PCR approach. Endocr Relat Cancer. 2006;13(4):1109–20.

    Article  CAS  PubMed  Google Scholar 

  43. Spanheimer PM, Woodfield GW, Cyr AR, Kulak MV, White-Baer LS, Bair TB, et al. Expression of the RET proto-oncogene is regulated by TFAP2C in breast cancer independent of the estrogen receptor. Ann Surg Oncol. 2013;20(7):2204–12.

    Article  PubMed  Google Scholar 

  44. Lehmann BD, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spanheimer PM, Lorenzen AW, de Andrade JP, Kulak MV, Carr JC, Woodfield GW, et al. Receptor tyrosine kinase expression predicts response to Sunitinib in breast Cancer. Ann Surg Oncol. 2015;22(13):4287–94.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zeng Q, Cheng Y, Zhu Q, Yu Z, Wu X, Huang K, et al. The relationship between overexpression of glial cell-derived neurotrophic factor and its RET receptor with progression and prognosis of human pancreatic cancer. J Int Med Res. 2008;36(4):656–64.

    Article  CAS  PubMed  Google Scholar 

  47. Ban K, et al. RET signaling in prostate Cancer. Clin Cancer Res. 2017;23(16):4885–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mulligan LM. GDNF and the RET receptor in Cancer: new insights and therapeutic potential. Front Physiol. 2018;9:1873.

    Article  PubMed  Google Scholar 

  49. Tan L, Hu Y, Tao Y, Wang B, Xiao J, Tang Z, et al. Expression and copy number gains of the RET gene in 631 early and mid stage non-small cell lung cancer cases. Thorac Cancer. 2018;9(4):445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hwang ES, Kim DW, Hwang JH, Jung HS, Suh JM, Park YJ, et al. Regulation of signal transducer and activator of transcription 1 (STAT1) and STAT1-dependent genes by RET/PTC (rearranged in transformation/papillary thyroid carcinoma) oncogenic tyrosine kinases. Mol Endocrinol. 2004;18(11):2672–84.

    Article  CAS  PubMed  Google Scholar 

  51. Plaza Menacho I, Koster R, van der Sloot A, Quax WJ, Osinga J, van der Sluis T, et al. RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res. 2005;65(5):1729–37.

    Article  PubMed  Google Scholar 

  52. Andreucci E, et al. Targeting the receptor tyrosine kinase RET in combination with aromatase inhibitors in ER positive breast cancer xenografts. Oncotarget. 2016;7(49):80543–53.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Spanheimer PM, Park JM, Askeland RW, Kulak MV, Woodfield GW, de Andrade JP, et al. Inhibition of RET increases the efficacy of antiestrogen and is a novel treatment strategy for luminal breast cancer. Clin Cancer Res. 2014;20(8):2115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stine ZE, McGaughey D, Bessling SL, Li S, McCallion A. Steroid hormone modulation of RET through two estrogen responsive enhancers in breast cancer. Hum Mol Genet. 2011;20(19):3746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sommer S, Fuqua SA. Estrogen receptor and breast cancer. Semin Cancer Biol. 2001;11(5):339–52.

    Article  CAS  PubMed  Google Scholar 

  56. Smith J, Read ML, Hoffman J, Brown R, Bradshaw B, Campbell C, et al. Germline ESR2 mutation predisposes to medullary thyroid carcinoma and causes up-regulation of RET expression. Hum Mol Genet. 2016;25(9):1836–45.

    Article  CAS  PubMed  Google Scholar 

  57. Andrew SD, Delhanty PJ, Mulligan LM, Robinson BG. Sp1 and Sp3 transactivate the RET proto-oncogene promoter. Gene. 2000;256(1–2):283–91.

    Article  CAS  PubMed  Google Scholar 

  58. Andrew SD, et al. Transcriptional repression of the RET proto-oncogene by a mitogen activated protein kinase-dependent signalling pathway. Gene. 2002;298(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  59. Lang D, Epstein JA. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet. 2003;12(8):937–45.

    Article  CAS  PubMed  Google Scholar 

  60. Leon TY, Ngan ES, Poon HC, So MT, Lui VC, Tam PK, et al. Transcriptional regulation of RET by Nkx2-1, Phox2b, Sox10, and Pax3. J Pediatr Surg. 2009;44(10):1904–12.

    Article  PubMed  Google Scholar 

  61. Zhu J, et al. HOXB5 cooperates with NKX2-1 in the transcription of human RET. PLoS One. 2011;6(6):e20815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009;4(7):e6146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Woodfield GW, Chen Y, Bair TB, Domann FE, Weigel RJ. Identification of primary gene targets of TFAP2C in hormone responsive breast carcinoma cells. Genes Chromosomes Cancer. 2010;49(10):948–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42(2):581–8.

    Article  CAS  PubMed  Google Scholar 

  65. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016;12(4):192–202.

    Article  CAS  PubMed  Google Scholar 

  66. Richardson DS, Gujral TS, Peng S, Asa SL, Mulligan LM. Transcript level modulates the inherent oncogenicity of RET/PTC oncoproteins. Cancer Res. 2009;69(11):4861–9.

    Article  CAS  PubMed  Google Scholar 

  67. Borrello MG, et al. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci U S A. 2005;102(41):14825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Puxeddu E, Knauf JA, Sartor MA, Mitsutake N, Smith EP, Medvedovic M, et al. RET/PTC-induced gene expression in thyroid PCCL3 cells reveals early activation of genes involved in regulation of the immune response. Endocr Relat Cancer. 2005;12(2):319–34.

    Article  CAS  PubMed  Google Scholar 

  69. Viglietto G, Chiappetta G, Martinez-Tello FJ, Fukunaga FH, Tallini G, Rigopoulou D, et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 1995;11(6):1207–10.

    CAS  PubMed  Google Scholar 

  70. Iwamoto T, Takahashi M, Ito M, Hamaguchi M, Isobe K, Misawa N, et al. Oncogenicity of the ret transforming gene in MMTV/ret transgenic mice. Oncogene. 1990;5(4):535–42.

    CAS  PubMed  Google Scholar 

  71. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18(3):375–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466(7308):869–73.

    Article  CAS  PubMed  Google Scholar 

  73. Unger K, Wienberg J, Riches A, Hieber L, Walch A, Brown A, et al. Novel gene rearrangements in transformed breast cells identified by high-resolution breakpoint analysis of chromosomal aberrations. Endocr Relat Cancer. 2010;17(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  74. Stransky N, et al. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.

    Article  CAS  PubMed  Google Scholar 

  75. Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res. 2017;23(8):1988–97.

    Article  CAS  PubMed  Google Scholar 

  76. Wells SA Jr, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995;267(5196):381–3.

    Article  CAS  PubMed  Google Scholar 

  78. Wells G, Bleicher K, Han X, McShane M, Chan YF, Bartlett A, et al. Maternal diabetes, large-for-gestational-age births, and first trimester pregnancy-associated plasma protein-a. J Clin Endocrinol Metab. 2015;100(6):2372–9.

    Article  CAS  PubMed  Google Scholar 

  79. Gujral TS, Singh VK, Jia Z, Mulligan LM. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B. Cancer Res. 2006;66(22):10741–9.

    Article  CAS  PubMed  Google Scholar 

  80. Plaza-Menacho I, Mologni L, McDonald NQ. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal. 2014;26(8):1743–52.

    Article  CAS  PubMed  Google Scholar 

  81. Bromberg JF, et al. Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol. 1998;18(5):2553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol. 2004;24(21):9390–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Melloni GEM, Mazzarella L, Bernard L, Bodini M, Russo A, Luzi L, et al. A knowledge-based framework for the discovery of cancer-predisposing variants using large-scale sequencing breast cancer data. Breast Cancer Res. 2017;19(1):63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Plaza-Menacho I, Morandi A, Mologni L, Boender P, Gambacorti-Passerini C, Magee AI, et al. Focal adhesion kinase (FAK) binds RET kinase via its FERM domain, priming a direct and reciprocal RET-FAK transactivation mechanism. J Biol Chem. 2011;286(19):17292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rheinbay E, et al. Recurrent and functional regulatory mutations in breast cancer. Nature. 2017;547(7661):55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–83.

    Article  CAS  PubMed  Google Scholar 

  87. Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day IN, et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics. 2015;31(10):1536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M, et al. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov. 2018;8(7):836–49.

    Article  CAS  PubMed  Google Scholar 

  89. Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol. 2018;29(8):1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Drilon A, Fu S, Patel MR, Fakih M, Wang D, Olszanski AJ, et al. A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105. Cancer Discov. 2019;9(3):384–95.

    Article  PubMed  Google Scholar 

  91. Ackermann CJ, Stock G, Tay R, Dawod M, Gomes F, Califano R. Targeted therapy for RET-rearranged non-small cell lung Cancer: clinical development and future directions. Onco Targets Ther. 2019;12:7857–64.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Guo R, et al. Response to selective RET inhibition with LOXO-292 in a patient with RET fusion-positive lung Cancer with leptomeningeal metastases. JCO Precis Oncol. 2019. 3.

  93. Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-Centre, phase 2, single-arm trial. Lancet Oncol. 2016;17(12):1653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee SH, Lee JK, Ahn MJ, Kim DW, Sun JM, Keam B, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol. 2017;28(2):292–7.

    Article  PubMed  Google Scholar 

  95. Nakaoku T, Kohno T, Araki M, Niho S, Chauhan R, Knowles PP, et al. A secondary RET mutation in the activation loop conferring resistance to vandetanib. Nat Commun. 2018;9(1):625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bhakta S, Crocker LM, Chen Y, Hazen M, Schutten MM, Li D, et al. An anti-GDNF family receptor alpha 1 (GFRA1) antibody-drug conjugate for the treatment of hormone receptor-positive breast Cancer. Mol Cancer Ther. 2018;17(3):638–49.

    Article  CAS  PubMed  Google Scholar 

  97. Bosco EE, Christie RJ, Carrasco R, Sabol D, Zha J, DaCosta K, et al. Preclinical evaluation of a GFRA1 targeted antibody-drug conjugate in breast cancer. Oncotarget. 2018;9(33):22960–75.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nguyen M, et al. Preclinical efficacy and safety assessment of an antibody-drug conjugate targeting the c-RET proto-oncogene for breast carcinoma. Clin Cancer Res. 2015;21(24):5552–62.

    Article  CAS  PubMed  Google Scholar 

  99. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19(1):58–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Klempner SJ, Bazhenova LA, Braiteh FS, Nikolinakos PG, Gowen K, Cervantes CM, et al. Emergence of RET rearrangement co-existing with activated EGFR mutation in EGFR-mutated NSCLC patients who had progressed on first- or second-generation EGFR TKI. Lung Cancer. 2015;89(3):357–9.

    Article  PubMed  Google Scholar 

  101. Piotrowska Z, Isozaki H, Lennerz JK, Gainor JF, Lennes IT, Zhu VW, et al. Landscape of acquired resistance to Osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with Osimertinib and BLU-667 for acquired RET fusion. Cancer Discov. 2018;8(12):1529–39.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A'Hern R, et al. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol. 2006;17(5):818–26.

    Article  CAS  PubMed  Google Scholar 

  103. Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002;2(2):101–12.

    Article  PubMed  Google Scholar 

  104. Howell A, Dowsett M. Endocrinology and hormone therapy in breast cancer: aromatase inhibitors versus antioestrogens. Breast Cancer Res. 2004;6(6):269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell. 2011;145(4):622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet. 2007;3(6):e87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Morandi A, Isacke CM. Targeting RET-interleukin-6 crosstalk to impair metastatic dissemination in breast cancer. Breast Cancer Res. 2014;16(1):301.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Horibata S, et al. ER-positive breast cancer cells are poised for RET-mediated endocrine resistance. PLoS One. 2018;13(4):e0194023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kang J, Perry JK, Pandey V, Fielder GC, Mei B, Qian PX, et al. Artemin is oncogenic for human mammary carcinoma cells. Oncogene. 2009;28(19):2034–45.

    Article  CAS  PubMed  Google Scholar 

  111. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–71.

    Article  CAS  PubMed  Google Scholar 

  112. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):518–27.

    Article  CAS  PubMed  Google Scholar 

  113. Griseri P, Garrone O, Lo Sardo A, Monteverde M, Rusmini M, Tonissi F, et al. Genetic and epigenetic factors affect RET gene expression in breast cancer cell lines and influence survival in patients. Oncotarget. 2016;7(18):26465–79.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Franco HL, Nagari A, Kraus WL. TNFalpha signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol Cell. 2015;58(1):21–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kang J, et al. Artemin is estrogen regulated and mediates antiestrogen resistance in mammary carcinoma. Oncogene. 2010;29(22):3228–40.

    Article  CAS  PubMed  Google Scholar 

  116. Tevaarwerk AJ, Gray RJ, Schneider BP, Smith ML, Wagner LI, Fetting JH, et al. Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years. Cancer. 2013;119(6):1140–8.

    Article  PubMed  Google Scholar 

  117. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast Cancer. Cell. 2015;163(2):506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pereira B, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.

    Article  CAS  PubMed  Google Scholar 

  123. Stephens PJ, Tarpey PS, Davies H, van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, et al. Genomic evolution of breast Cancer metastasis and relapse. Cancer Cell. 2017;32(2):169–84 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell. 2018;34(3):427–38 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lin NU, Bellon JR, Winer EP. CNS metastases in breast cancer. J Clin Oncol. 2004;22(17):3608–17.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Argentinian grants, GFN°02 from Fundación para el progreso de la medicina (fpm), PICT-2016-2834 and PICT-2017-1268 from Agencia Nacional de Producción Científica y Tecnológica (ANPCyT), awarded to AG. SAV is supported by a scholarship from National Argentinian Research Council CONICET.

Author information

Authors and Affiliations

Authors

Contributions

AG and NEH wrote and prepared the manuscript. IS performed the in silico analysis of publically available data. SAV contributed with the figures conception and preparation.

Corresponding author

Correspondence to Albana Gattelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gattelli, A., Hynes, N.E., Schor, I.E. et al. Ret Receptor Has Distinct Alterations and Functions in Breast Cancer. J Mammary Gland Biol Neoplasia 25, 13–26 (2020). https://doi.org/10.1007/s10911-020-09445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-020-09445-4

Keywords

Navigation