Skip to main content

Advertisement

Log in

The Role of Cathepsins in Involution and Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Cysteine cathepsins are proteolytic enzymes that reside in endolysosomal vesicles. Some are expressed constitutively while others are transcriptionally regulated. However, the expression and subcellular localization of cathepsins changes during cancer progression and cathepsins have been shown to be causally involved in various aspects of tumorigenesis including metastasis. The use of mouse models of breast cancer genetically ablated for cathepsin B has shown that both the growth of the primary tumor and the extend of lung metastasis is reduced by the loss of cathepsin B. The role of cathepsins in involution of the mammary gland has received little attention although it is clear that cathepsins are involved in tissue remodeling in the second phase of involution. We discuss here the roles of cathepsins and their endogenous inhibitors in breast tumorigenesis and post-lactational involution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

Stat:

Signal transducer and activator of transcription

h:

hours

Fig.:

figure

ROS:

reactive oxygen species

ACD:

autophagic cell death

TNFα:

tumor necrosis factor alpha

LMP:

lysosomal membrane permeabilization

RANKL:

receptor activator of nuclear factor-kappaB ligand

iNOS:

inducible nitric oxide synthase

kDa:

kiloDaltons

MMTV-PyMT:

mouse mammary tumor virus-Polyoma middle T antigen

Cat:

cathepsin

References

  1. Watson CJ. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 2006;8(2):203.

    Article  PubMed  CAS  Google Scholar 

  2. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci USA. 1997;94:3425–30.

    Article  PubMed  CAS  Google Scholar 

  3. Noble MS, Hurley WL. Effects of secretion removal on bovine mammary gland function following an extended milk stasis. J Dairy Sci. 1999;82:1723–30.

    Article  PubMed  CAS  Google Scholar 

  4. Lund LR, Rømer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development. 1996;122:181–93.

    PubMed  CAS  Google Scholar 

  5. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999;13:2604–16.

    Article  PubMed  CAS  Google Scholar 

  6. Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L. Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology. 2002;143:3641–50.

    Article  PubMed  CAS  Google Scholar 

  7. Bresden DE. Toward a mechanistic taxonomy for cell death programs. Stroke. 2007;38:652–65.

    Article  Google Scholar 

  8. Henriquez M, Armisén R, Stutzin A, Quest AF. Cell death by necrosis, a regulated way to go. Curr Mol Med. 2008;8(3):187–206.

    Article  PubMed  CAS  Google Scholar 

  9. Golstein P, Kroemer G. Redundant cell death mechanisms as relics and backups. Cell Death Differ. 2005;12(Suppl 2):1490–6.

    Article  PubMed  CAS  Google Scholar 

  10. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004–10.

    Article  PubMed  CAS  Google Scholar 

  11. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 2008;135(7):1311–23.

    Article  PubMed  CAS  Google Scholar 

  12. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–9.

    Article  PubMed  CAS  Google Scholar 

  13. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51.

    Article  PubMed  CAS  Google Scholar 

  14. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001;3(11):E255–63.

    Article  PubMed  CAS  Google Scholar 

  15. Schütze S, Machleidt T, Adam D, Schwandner R, Wiegmann K, Kruse ML, et al. Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem. 1999;274(15):10203–12.

    Article  PubMed  Google Scholar 

  16. Kågedal K, Zhao M, Svensson I, Brunk UT. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J. 2001;359(Pt 2):335–43.

    Article  PubMed  Google Scholar 

  17. Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol. 2002;283(4):G947–56.

    PubMed  CAS  Google Scholar 

  18. Fehrenbacher N, Bastholm L, Kirkegaard-Sørensen T, Rafn B, Bøttzauw T, Nielsen C, et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 2008;68(16):6623–33.

    Article  PubMed  CAS  Google Scholar 

  19. Bidère N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem. 2003;278(33):31401–11.

    Article  PubMed  CAS  Google Scholar 

  20. Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ. Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem. 2007;282(39):28960–70.

    Article  PubMed  CAS  Google Scholar 

  21. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.

    Article  PubMed  CAS  Google Scholar 

  22. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem. 2001;276(5):3149–57.

    Article  PubMed  CAS  Google Scholar 

  23. Green KA, Lund LR. ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays. 2005;27(9):894–903.

    Article  PubMed  CAS  Google Scholar 

  24. Hojilla CV, Wood GA, Khokha R. Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res. 2008;210(2):205.

    Article  CAS  Google Scholar 

  25. Almholt K, Green KA, Juncker-Jensen A, Nielsen BS, Lund LR, Rømer J. Extracellular proteolysis in transgenic mouse models of breast cancer. J Mammary Gland Biol Neoplasia. 2007;12(1):83–97.

    Article  PubMed  Google Scholar 

  26. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8:917–29.

    Article  PubMed  CAS  Google Scholar 

  27. Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000;1477(1–2):98–111.

    PubMed  CAS  Google Scholar 

  28. Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 2001;20(17):4629–33.

    Article  PubMed  CAS  Google Scholar 

  29. Turk V, Turk B, Guncar G, Turk D, Kos J. Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. Adv Enzyme Regul. 2002;42:285–303.

    Article  PubMed  CAS  Google Scholar 

  30. de Duve C. Lysosomes revisited. Eur J Biochem. 1983;137(3):391–7.

    Article  PubMed  Google Scholar 

  31. Saftig P, Hunziker E, Everts V, Jones S, Boyde A, Wehmeyer O, et al. Functions of cathepsin K in bone resorption. Lessons from cathepsin K deficient mice. Adv Exp Med Biol. 2000;477:293–303.

    Article  PubMed  CAS  Google Scholar 

  32. Shi GP, Villadangos JA, Dranoff G, Small C, Gu L, Haley KJ, et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity. 1999;10(2):197–206.

    Article  PubMed  CAS  Google Scholar 

  33. Lagadic-Gossmann D, Huc L, Lecureur V. Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ. 2004;11(9):953–61.

    Article  PubMed  CAS  Google Scholar 

  34. Turk B, Bieth JG, Björk I, Dolenc I, Turk D, Cimerman N, et al. Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol Chem Hoppe Seyler. 1995;376(4):225–30.

    PubMed  CAS  Google Scholar 

  35. Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8(8):622–32.

    Article  PubMed  CAS  Google Scholar 

  36. Cirman T, Oresic K, Droga Mazovec G, Turk V, Reed JC, Myers RM, et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by Cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem. 2004;279:3578–87.

    Article  PubMed  CAS  Google Scholar 

  37. Blomgran R, Zheng L, Stendahl O. Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol. 2007;81(5):1213–23.

    Article  PubMed  CAS  Google Scholar 

  38. Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem. 2008;283:19140–50.

    Article  PubMed  CAS  Google Scholar 

  39. Reiners JJ Jr, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ. 2002;9(9):934–44.

    Article  PubMed  CAS  Google Scholar 

  40. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006;20(5):543–56.

    Article  PubMed  CAS  Google Scholar 

  41. Yasothornsrikul S, Greenbaum D, Medzihradszky KF, Toneff T, Bundey R, Miller R, et al. Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proc Natl Acad Sci U S A. 2003;100(16):9590–5.

    Article  PubMed  CAS  Google Scholar 

  42. Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, et al. A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell. 2004;14(2):207–19.

    Article  PubMed  CAS  Google Scholar 

  43. Koblinski JE, Dosescu J, Sameni M, Moin K, Clark K, Sloane BF. Interaction of human breast fibroblasts with collagen I increases secretion of procathepsin B. J Biol Chem. 2002;277(35):32220–7.

    Article  PubMed  CAS  Google Scholar 

  44. Sloane BF, Moin K, Sameni M, Tait LR, Rozhin J, Ziegler G. Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene. J Cell Sci. 1994 Feb;107(Pt 2):373--84.

    PubMed  CAS  Google Scholar 

  45. Roshy S, Sameni M, Koblinski J, Sloane BF. Cathepsin B in the development of mammary acini in vitro. Toxicol Pathol. 2004;32:159.

    Article  Google Scholar 

  46. Cavallo-Medved D, Rudy D, Blum G, Bogyo M, Caglic D, Sloane BF. Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp Cell Res. 2009;315(7):1234–46.

    Article  PubMed  CAS  Google Scholar 

  47. Mercier I, Casimiro MC, Zhou J, Wang C, Plymire C, Bryant KG, et al. Genetic ablation of caveolin-1 drives estrogen-hypersensitivity and the development of DCIS-like mammary lesions. Am J Pathol. 2009;174(4):1172–90.

    Article  PubMed  CAS  Google Scholar 

  48. Piwnica D, Fernandez I, Binart N, Touraine P, Kelly PA, Goffin V. A new mechanism for prolactin processing into 16K PRL by secreted cathepsin D. Mol Endocrinol. 2006;20(12):3263–78.

    Article  PubMed  CAS  Google Scholar 

  49. Castino R, Delpal S, Bouguyon E, Demoz M, Isidoro C, Ollivier-Bousquet M. Prolactin promotes the secretion of active cathepsin D at the basal side of rat mammary acini. Endocrinology. 2008;149(8):4095–105.

    Article  PubMed  CAS  Google Scholar 

  50. Wilson TJ, Nannuru KC, Futakuchi M, Sadanandam A, Singh RK. Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor actator of nuclear factor-kappaB ligand. Cancer Res. 2008;68(14):5803–11.

    Article  PubMed  CAS  Google Scholar 

  51. Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004;6(2):R92–109.

    Article  PubMed  CAS  Google Scholar 

  52. Han J, Luo T, Gu Y, Li G, Jia W, Luo M. Cathepsin K regulates adipocyte differentiation: possible involvement of type I collagen degradation. Endocr J. 2009;56(1):55–63.

    Article  PubMed  CAS  Google Scholar 

  53. Burke MA, Hutter D, Reshamwala RP, Knepper JE. Cathepsin L plays an active role in involution of the mouse mammary gland. Dev Dyn. 2003;227(3):315–22.

    Article  PubMed  CAS  Google Scholar 

  54. Guenette RS, Mooibroek M, Wong K, Wong P, Tenniswood M. Cathepsin B, a cysteine protease implicated in metastatic progression, is also expressed during regression of the rat prostate and mammary glands. Eur J Biochem. 1994;226(2):311–21.

    Article  PubMed  CAS  Google Scholar 

  55. Zaragozá R, Torres L, García C, Eroles P, Corrales F, Bosch A, et al. Nitration of cathepsin D enhances its proteolytic activity during mammary gland remodelling after lactation. Biochem J. 2009;419(2):279–88.

    Article  PubMed  CAS  Google Scholar 

  56. Zaragozá R, Miralles VJ, Rus AD, García C, Carmena R, García-Trevijano ER, et al. Weaning induces NOS-2 expression through NF-kappaB modulation in the lactating mammary gland: importance of GSH. Biochem J. 2005;391(Pt 3):581–8.

    PubMed  Google Scholar 

  57. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.

    Article  PubMed  CAS  Google Scholar 

  58. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006;20(5):543–56.

    Article  PubMed  CAS  Google Scholar 

  59. Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J. 1992;282(Pt 1):273–8.

    PubMed  CAS  Google Scholar 

  60. Rozhin J, Sameni M, Ziegler G, Sloane BF. Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res. 1994;54(24):6517–25.

    PubMed  CAS  Google Scholar 

  61. Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006;66(10):5242–50.

    Article  PubMed  CAS  Google Scholar 

  62. Frosch BA, Berquin I, Emmert-Buck MR, Moin K, Sloane BF. (1999) Molecular regulation, membrane association and secretion of tumor cathepsin B. APMIS. 1999;107(1):28–37.

    Article  PubMed  CAS  Google Scholar 

  63. Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006;66(10):5242–50.

    Article  PubMed  CAS  Google Scholar 

  64. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  PubMed  CAS  Google Scholar 

  65. Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, Bronson RT, et al. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci U S A. 2002;99(12):7883–8.

    Article  PubMed  CAS  Google Scholar 

  66. Vasiljeva O, Korovin M, Gajda M, Brodoefel H, Bojic L, Krüger A. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene. 2008;27(30):4191–9.

    Article  PubMed  CAS  Google Scholar 

  67. Schurigt U, Sevenich L, Vannier C, Gajda M, Schwinde A, Werner F, et al. Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model. Biol Chem. 2008 Aug;389(8):1067–74.

    Article  PubMed  CAS  Google Scholar 

  68. Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–9.

    Article  PubMed  CAS  Google Scholar 

  69. Colbert JD, Plechanovová A, Watts C. Glycosylation directs targeting and activation of cystatin f from intracellular and extracellular sources. Traffic. 2009;10(4):425–37.

    Article  PubMed  CAS  Google Scholar 

  70. Lah TT, Kokalj-Kunovar M, Strukelj B, Pungercar J, Barlic-Maganja D, Drobnic-Kosorok M, et al. Stefins and lysosomal cathepsins B, L and D in human breast carcinoma. Int J Cancer. 1992;50(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  71. Parker BS, Ciocca DR, Bidwell BN, Gago FE, Fanelli MA, George J, et al. Primary tumour expression of the cysteine cathepsin inhibitor Stefin A inhibits distant metastasis in breast cancer. J Pathol. 2008;214(3):337–46.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang J, Shridhar R, Dai Q, Song J, Barlow SC, Yin L, et al. Cystatin m: a novel candidate tumor suppressor gene for breast cancer. Cancer Res. 2004;64(19):6957–64.

    Article  PubMed  CAS  Google Scholar 

  73. Vigneswaran N, Wu J, Muller S, Zacharias W, Narendran S, Middleton L. Expression analysis of cystatin C and M in laser-capture microdissectioned human breast cancer cells—a preliminary study. Pathol Res Pract. 2005;200(11–12):753–62.

    Article  PubMed  CAS  Google Scholar 

  74. Ai L, Kim WJ, Kim TY, Fields CR, Massoll NA, Robertson KD, et al. Epigenetic silencing of the tumor suppressor cystatin M occurs during breast cancer progression. Cancer Res. 2006;66(16):7899–909.

    Article  PubMed  CAS  Google Scholar 

  75. Dbaibo GS, Hannun YA. Cytokine response modifier A (CrmA): a strategically deployed viral weapon. Clin Immunol Immunopathol. 1998;86(2):134–40.

    Article  PubMed  CAS  Google Scholar 

  76. Bird CH, Sutton VR, Sun J, Hirst CE, Novak A, Kumar S, et al. Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol Cell Biol. 1998;18(11):6387–98.

    PubMed  CAS  Google Scholar 

  77. Khalkhali-Ellis Z, Hendrix MJ. Elucidating the function of secreted maspin: inhibiting cathepsin D-mediated matrix degradation. Cancer Res. 2007;67(8):3535–9.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang M, Magit D, Botteri F, Shi HY, He K, Li M, et al. Maspin plays an important role in mammary gland development. Dev Biol. 1999;215(2):278–8.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang M, Shi Y, Magit D, Furth PA, Sager R. Reduced mammary tumor progression in WAP-TAg/WAP-maspin bitransgenic mice. Oncogene. 2000;19(52):6053–8.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang M. Multiple functions of maspin in tumor progression and mouse development. Front Biosci. 2004;9:2218–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by the BBSRC, the Breast Cancer Campaign and the AICR. PK is supported by a Pathology Department PhD studentship. We thank Drs Blandine Kedjouar and Jeremy Skepper for the images shown in Fig. 1b and c respectively. We are grateful to Professor Philip Ashton-Rickardt for his helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine J. Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, C.J., Kreuzaler, P.A. The Role of Cathepsins in Involution and Breast Cancer. J Mammary Gland Biol Neoplasia 14, 171–179 (2009). https://doi.org/10.1007/s10911-009-9126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-009-9126-8

Keywords

Navigation