Skip to main content
Log in

Relationship between Lennard-Jones potential and physico-chemical parameters

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We developed in this paper the used methodology to describe the Lennard-Jones potential of two atoms in rare gas. In this treatment we supposed that one atom could be described by a harmonic oscillator. The interaction potential is developed at short and long ranges. The results showed that the obtained physico-chemical parameters such as the oscillator frequency, the atom mass, and the atom charge well reproduce the Lennard-Jones potential. Then the potential well depth and the effective equilibrium diameter are expressed in function of the oscillator frequency, the atom mass and charge.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

\({H}_{T}\) :

Total Hamiltonian

\({H}_{AB}\) :

Interaction Hamiltonian

k :

Stiffness of the harmonic vibrator

z (i = A or B):

Dipolar charges distance

\({R}_{AB}\) :

Interatomic distance

m :

Atom mass

\({\upupsilon }_{0}\) :

Vibration frequency corresponding to the lowest energy

\({{\text{E}}}_{0}\) :

Lowest energy

h :

Planck’s constant

\({E}_{0}^{c}\) :

Minimum energy of the system (after coupling)

\({{\text{V}}}_{a}\) :

Attractive energy

\({{\text{V}}}_{r}\) :

Repulsion energy

\(V\left({R}_{AB}\right)\) :

Lennard-Jones potential

\({\varepsilon }_{s}\) :

Well depth

\({\sigma }_{s}\) :

Equilibrium diameter

References

  1. I.C. Gerber, J.G. Ángyán, London dispersion forces by range-separated hybrid density functional with second order perturbational corrections: the case of rare gas complexes. J. Chem. Phys 126, 044103 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. J.M. Pérez-Jordá, E. San-Fabián, A.J. Pérez-Jiménez, Density-functional study of van der Waals forces on rare-gas diatomics: Hartree-Fock exchange. J. Chem. Phys 110, 1916 (1999)

    Article  Google Scholar 

  3. R.A. Buckingham, The quantum theory of atomic polarization II—The van der Waals energy of two atoms. Roy. Soc. 160, 113 (1936)

    Google Scholar 

  4. R.A. Aziz, A new potential fitting procedure with application to Ar–Ar. J. Chem. Phys. 65, 490 (1976)

    Article  CAS  Google Scholar 

  5. P.G. Hajigeorgiou, An extended Lennard-Jones potential energy function for diatomic molecules: application to ground electronic states. J. Mol. Spectrosc. 263, 101 (2010)

    Article  CAS  Google Scholar 

  6. P.G. Hajigeorgiou, The extended Lennard-Jones potential energy function: a simpler model for direct-potential-fit analysis. J. Mol. Spectrosc. 330, 4 (2016)

    Article  CAS  Google Scholar 

  7. J.A. Rackers, J.W. Ponder, Classical Pauli repulsion: An anisotropic, atomic multipole model. J. Chem. Phys. 150, 084104 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  8. C. Lin, X. Zhang, X. Qiang, J.S. Zhang, Z.J. Tan, Apparent repulsion between equally and oppositely charged spherical polyelectrolytes in symmetrical salt solutions. J. Chem. Phys. 151, 114902 (2019)

    Article  PubMed  Google Scholar 

  9. G. Mie, Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. 316, 657 (1903)

    Article  Google Scholar 

  10. L. Jones, On the determination of molecular fields.-I. From the variation of the viscosity of a gas with temperature. Proc. R Soc. Lond. A 106, 441 (1924)

    Article  CAS  Google Scholar 

  11. L. Jones, On the determination of molecular fields. -II. From the equation of state of a gas. Proc. R Soc. Lond. A 106, 463 (1924)

    Article  CAS  Google Scholar 

  12. T.L. Gilbert, O C Simpson M A and Williamson, Relation between charge and force parameters of closed-shell atoms and ions. J. Chem. Phys. 63, 4061 (1975)

    Article  CAS  Google Scholar 

  13. T.A. Halgren, The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J. Am. Chem. Soc. 114, 7827 (1992)

    Article  CAS  Google Scholar 

  14. O. Roncero, P. Villarreal, G. Delgado-Barrio, J. González-Platas, J. Bretón, Potential energy surface and spectroscopy of clusters of rare-gas atoms with cyclopropane. J. Chem. Phys. 109, 9288 (1998)

    Article  CAS  Google Scholar 

  15. P. Söderhjelm, G. Karlström, U. Ryde, Comparison of overlap-based models for approximating the exchange-repulsion energy. J. Chem. Phys. 124, 244101 (2006)

    Article  PubMed  Google Scholar 

  16. S. Marcelja, Hydration in electrical double layers. Nature 385, 689 (1997)

    Article  CAS  Google Scholar 

  17. G. Maroulis, A note on the interaction-induced electric quadrupole moment of two xenon atoms. Chem. Phys. Lett. 647, 114 (2016)

    Article  CAS  Google Scholar 

  18. T.W. Whitfield, G.J. Martyna, A unified formalism for many-body polarization and dispersion: the quantum Drude model applied to fluid xenon. Chem. Phys. Lett. 424, 409 (2006)

    Article  CAS  Google Scholar 

  19. A A Maradudin, Dynamical Properties of Solids edited by G. K. Horton and A. A. Maradudin ( North-Holland, Amsterdam, 1974) Vol. 1.

  20. S.A. Egorov, J.L. Skinner, Vibrational energy relaxation of diatomic molecules in rare gas crystals. J. Chem. Phys. 106, 1034 (1997)

    Article  CAS  Google Scholar 

  21. H. Wennerström, The van der Waals interaction between colloidal particles and its molecular interpretation. Coll. Surf. A Physicochem. Eng. Asp. 228, 189 (2003)

    Article  Google Scholar 

  22. G. Maroulis, A. Haskopoulos, D. Xenides, New basis sets for xenon and the interaction polarizability of two xenon atoms. Chem. Phys. Lett. 396, 59 (2004)

    Article  CAS  Google Scholar 

  23. P. Chaquin, P. Reinhardt, Deformation forces in promolecules revisited: binding of homonuclear diatomic molecules and calculation of stretching vibrational frequencies in diatomic and larger systems. Comp. Theor. Chem. 1096, 33 (2016)

    Article  CAS  Google Scholar 

  24. X. Feng, Z. Zong, S. Elsaidi, J.B. Jasinski, R. Krishna, P.K. Thallapally, M.A. Carreon, Kr/Xe separation over a chabazite zeolite membrane. J. Am. Chem. Soc. 31, 9791 (2016)

    Article  Google Scholar 

  25. W.C. Stwalley, Mass-reduced quantum numbers: application to the isotopic mercury hydrides. J. Chem. Phys. 61, 3062 (1975)

    Article  Google Scholar 

Download references

Funding

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript.

Corresponding authors

Correspondence to Yosra Ben Torkia or Abdelmottaleb Ben Lamine.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Torkia, Y., Ben Lamine, A. Relationship between Lennard-Jones potential and physico-chemical parameters. J Math Chem (2024). https://doi.org/10.1007/s10910-024-01598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10910-024-01598-5

Keywords

Navigation