Skip to main content
Log in

Unsteady triple diffusive oscillatory flow in a Voigt fluid

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Convective energy and mass transfer in a non-Newtonian fluid layers a wide-spread physical phenomenon in natural and technical systems. Triple diffusive convection plays a crucial role in chemical engineering by enabling the understanding and optimisation of mass transfer processes involving multiple components. It is essential for designing efficient separation systems, optimising catalysts, predicting reaction kinetics, and improving environmental processes. The motivation of this paper is to explore an Oscillatory flow of a triple diffusive convection in a Voigt fluid layer. The governing partial differential equations are transformed into coupled ordinary differential equations with the help of the oscillation technique. The study emphasises the effects of known physical parameters, such as the thermal Grashof number, solutal Grashof number, Prandtl number, Lewis numbers and Voigt fluid parameters on velocity, temperature, concentrations and rate of heat and mass transfers. In particularly, the study finds that skin friction increases on both channel plates with increasing injection on the heated plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. C.F. Chen, D.H. Johnson, Double-diffusive convection: a report on an Engineering Foundation conference. J. Fluid Mech. 138, 405–416 (1984)

    Article  Google Scholar 

  2. A.A. Hill, M.S. Malashetty, An operative method to obtain sharp nonlinear stability for systems with spatially dependent coefficients. Proc. R. Soc. Lond. A 468, 323–336 (2012)

    Google Scholar 

  3. W. Shyy, M.H. Chen, Double-diffusive flow in enclosures. Phys. Fluids A 3(11), 2592–2607 (1991)

    Article  CAS  Google Scholar 

  4. A.V. Kuznetsov, D.A. Nield, Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 50(5), 712–717 (2011)

    Article  Google Scholar 

  5. I.A. Badruddin, T.M. Khan, S. Kamangar, Effect of variable heating on double diffusive flow in a square porous cavity. AIP Conf. Proc. 1728(1), 020689 (2016)

    Article  Google Scholar 

  6. J.S. Turner, Multicomponent convection. Annu. Rev. Fluid Mech. 17, 11–44 (1985)

    Article  Google Scholar 

  7. H.E. Huppert, J.S. Turner, Double-diffusive convection. J. Fluid Mech. 106, 299–329 (1981)

    Article  Google Scholar 

  8. M. Nasir, M. Waqas, M.S. Kausar, O.A. Bég, N. Zamri, Cattaneo-Christov dual diffusive non-Newtonian nanoliquid flow featuring nonlinear convection. Chin. J. Phys. (2022). https://doi.org/10.1016/j.cjph.2022.05.005

    Article  Google Scholar 

  9. J.K. Platten, J.C. Legros, Convection in Liquids (Springer, New York, 2011)

    Google Scholar 

  10. R.W. Griffiths, The influence of a third diffusing component upon the onset of convection. J. Fluid Mech. 92, 659–670 (1979)

    Article  Google Scholar 

  11. G. Terrones, Cross diffusion effects on the stability criteria in a triply diffusive system. Phys. Fluids 5, 2172–2182 (1993)

    Article  CAS  Google Scholar 

  12. B. Straughan, J. Tracey, Multi-component convection–diffusion with internal heating or cooling. Acta Mech. 133, 219–239 (1999)

    Article  Google Scholar 

  13. Z.H. Khan, W.A. Khan, M.A. Sheremet, J. Tang, L. Sun, Irreversibilities in a triple diffusive flow in various porous cavities. Chin. J. Phys. 73, 239–255 (2021)

    Article  CAS  Google Scholar 

  14. J.C. Umavathi, H.M. Ali, S.L. Patil, Triple diffusive mixed convection flow in a duct using convective boundary conditions. Math. Methods Appl. Sci. 43(15), 9223–9244 (2020)

    Article  Google Scholar 

  15. K.R. Raghunatha, I.S. Shivakumara, Triple diffusive convection in a viscoelastic Oldroyd-B fluid layer. Phys. Fluids 33(6), 063108 (2021)

    Article  CAS  Google Scholar 

  16. K.R. Raghunatha, I.S. Shivakumara, M.S. Swamy, Effect of cross-diffusion on the stability of a triple-diffusive Oldroyd-B fluid layer. Z. Angew. Math. Phys. 70, 1–21 (2019)

    Article  Google Scholar 

  17. K.R. Raghunatha, I.S. Shivakumara, Double-diffusive convection in a rotating viscoelastic fluid layer. ZAMM J. Appl. Math. Mech. 101(4), e201900025 (2021)

    Article  Google Scholar 

  18. I.S. Shivakumara, K.R. Raghunatha, M.N. Savitha, M. Dhananjaya, Implication of cross-diffusion on the stability of double diffusive convection in an imposed magnetic field. Z. Angew. Math. Phys. 72(3), 117 (2021)

    Article  CAS  Google Scholar 

  19. K.R. Raghunatha, Y. Vinod, B.V. Manjunatha, Application of Bernoulli wavelet method on triple-diffusive convection in Jeffery-Hamel flow. Heat Transf. 52(8), 5269–5301 (2023)

    Article  Google Scholar 

  20. R. Padma, R. Ponalagusamy, R.T. Selvi, Mathematical modeling of electro hydrodynamic non-Newtonian fluid flow through tapered arterial stenosis with periodic body acceleration and applied magnetic field. Appl. Math. Comput. 362, 124453 (2019)

    Google Scholar 

  21. R. Ponalagusamy, Particulate suspension Jeffrey fluid flow in a stenosed artery with a particle-free plasma layer near the wall. Korea-Aust. Rheol. J. 28, 217–227 (2016)

    Article  Google Scholar 

  22. R. Ponalagusamy, R. Tamil Selvi, Influence of magnetic field and heat transfer on two-phase fluid model for oscillatory blood flow in an arterial stenosis. Meccanica 50, 927–943 (2015)

    Article  Google Scholar 

  23. R. Ponalagusamy, D. Murugan, Dispersion of a solute in blood flowing through narrow arteries with homogeneous first-order chemical reaction. Proc. Natl Acad. Sci. India A 91, 1–6 (2021)

    Google Scholar 

  24. R. Ponalagusamy, D. Murugan, Effect of electro–magneto-hemodynamic environs on dispersion of solute in the peristaltic motion through a channel with chemical reaction, wall properties and porous medium. Korea-Aust. Rheol. J. 34(1), 69–90 (2022)

    Article  Google Scholar 

  25. R. Ponalagusamy, D. Murugan, Transport of a reactive solute in electroosmotic pulsatile flow of non-Newtonian fluid through a circular conduit. Chin. J. Phys. 81, 243–269 (2023)

    Article  Google Scholar 

  26. R. Ponalagusamy, D. Murugan, Impact of variable viscosity, chemical reaction and electro-osmotic mechanism on the dispersal of solute through a uniform channel with permeable walls. Int. J. Appl. Comput. Math. 8(2), 55 (2022)

    Article  Google Scholar 

  27. W. Voigt, Ueber die Beziehungzwischen den beiden Elasticitäts constant enisotroper Körper. Ann. Phys. 274(12), 573–587 (1889)

    Article  Google Scholar 

  28. A.A. Peek et al., Viscoelastic properties of human knee joint soft tissues under high strain rate deformations. J. Biomech. Eng. 139, 12 (2017)

    Google Scholar 

  29. C.J. Hurren et al., Viscoelastic characterization of polyethylene using oscillatory shear measurements. Polym. Test. 67, 156–167 (2018)

    Google Scholar 

  30. H. Lee et al., Viscoelastic properties of silicone rubber for low-frequency acoustic applications. Appl. Acoust. 144, 91–97 (2019)

    Google Scholar 

  31. B. Straughan, Stability in Kelvin-Voigt poroelasticity. Boll. Unione Mat. Ital. 14(2), 357–366 (2021)

    Article  Google Scholar 

  32. B. Straughan, Continuous dependence and convergence for a Kelvin-Voigt fluid of order one. Ann. Univ. Diferrara 68(1), 49–61 (2022)

    Article  Google Scholar 

  33. V.G. Zvyagin, M.V. Turbin, The study of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids. J. Math. Sci. 168, 157–308 (2010)

    Article  Google Scholar 

  34. M. Kaya, A.O. Çelebi, Existence of weak solutions of the g-Kelvin–Voigt equation. Math. Comput. Model. 49(3–4), 497–504 (2009)

    Article  Google Scholar 

  35. E.S. Baranovskii, Strong solutions of the incompressible Navier–Stokes–Voigt model. Mathematics 8(2), 181 (2020)

    Article  Google Scholar 

  36. S.I. Kadchenko, A.O. Kondyukov, Numerical study of a flow of viscoelastic fluid of Kelvin-Voigt having zero order in a magnetic field. J. Comput. Eng. Math. 3(2), 40–47 (2016)

    Article  Google Scholar 

  37. B. Straughan, Competitive double diffusive convection in a Kelvin-Voigt fluid of order one. Appl. Math. Optim. 84(Suppl 1), 631–650 (2021)

    Article  Google Scholar 

  38. B. Straughan, Thermosolutal convection with a Navier–Stokes–Voigt fluid. Appl. Math. Optim. 84(3), 2587–2599 (2021)

    Article  Google Scholar 

  39. H.A. Stone, A.D. Stroock, Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2005)

    Article  Google Scholar 

  40. Y. Liu, G.E. Karniadakis, Microfluidics Modeling Mechanics and Mathematics (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  41. Y. Shapira, H. Rappaport, Oscillatory flows and enhanced heat transfer. Heat Mass Transf. 48, 777–1784 (2012)

    Google Scholar 

  42. M. Bouchoucha, F. Ravelet, Energy harvesting from oscillatory flows: a review. Renew. Sustain. Energy Rev. 81, 2023–2036 (2016)

    Google Scholar 

  43. K. Sudo, M. Sumida, R. Yamane, Secondary motion of fully developed oscillatory flow in a curved pipe. J. Fluid Mech. 237, 189–208 (1992)

    Article  CAS  Google Scholar 

  44. P. Bianchi, J.D. Williams, C.O. Kappe, Oscillatory flow reactors for synthetic chemistry applications. J. Flow Chem. 10, 475–490 (2020)

    Article  CAS  Google Scholar 

  45. V.L. Kopparthy, N.D. Crews, Oscillating-flow thermal gradient PCR. bioRxiv 544908 (2019)

  46. K.R. Raghunatha, M. Inc, Y. Vinod, Viscoelastic effects on the oscillatory flow in a fluid-saturated porous layer. Heat Transf. 53(1), 244–258 (2024)

    Article  Google Scholar 

  47. K.R. Raghunatha, Y. Vinod, M. Inc, E.N. Yildirim, Viscoelastic effects on the double-diffusive oscillatory flow in a fluid-saturated porous layer. Mod. Phys. Lett. B 7, 2350167 (2023)

    Article  Google Scholar 

  48. K.R. Raghunatha, Y. Vinod, Couple stress effects on the MHD oscillatory flow in a fluid-saturated porous layer. Heat Transf. 52, 5214–5230 (2023)

    Article  Google Scholar 

  49. R.K. Alhefthi, Y. Vinod, K.R. Raghunatha, M. Inc, Couple stress effects on the MHD triple-diffusive oscillatory flow in a fluid-saturated porous layer. Mod. Phys. Lett. B (2023). https://doi.org/10.1142/S0217984924501161

    Article  Google Scholar 

  50. J.A. Falade, J.C. Ukaegbu, A.C. Egere, S.O. Adesanya, MHD oscillatory flow through a porous channel saturated with porous medium. Alex. Eng. J. 56(1), 147–152 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their constructive comments and useful suggestions which helped in improving the paper considerably.

Funding

No funding was received to assist with preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Vinod Y.], [K. R. Raghunatha], [Suma Nagendrappa Nagappanavar], [Sangamesh]. Material preparation, data collection[ D.L. Kiran Kumar] The first draft of the manuscript was written by [Vinod Y.], [K. R. Raghunatha], and all the authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. R. Raghunatha.

Ethics declarations

Conflict of interest

All the authors declared that there was no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Coefficients of Eqs. (19)–(22) are

Appendix: Coefficients of Eqs. (19)–(22) are

\(A_{0}\)

\(- \frac{1}{{e^{{m_{2} }} - e^{{m_{1} }} }}\)

\(B_{0}\)

\(\frac{1}{{e^{{m_{2} }} - e^{{m_{1} }} }}\)

\(A_{1}\)

\(\frac{{B_{1} \left( {\gamma m_{4} - 1} \right) + n_{1} - n_{0} }}{{1 - m_{3} \gamma }}\)

\(B_{1}\)

\(- \frac{{n_{2} (1 - m_{3} \gamma ) + \left( {n_{1} - n_{0} } \right)e^{{m_{3} }} }}{{e^{{m_{4} }} (1 - m_{3} \gamma ) + \left( {\gamma m_{4} - 1} \right)e^{{m_{3} }} }}\)

\(n_{0}\)

\(Q_{0} + Q_{1} + Q_{2} + Q_{3} + Q_{4}\)

\(n_{1}\)

\(\gamma \left( {Q_{1} m_{1} + Q_{2} m_{2} + Q_{3} m_{5} + Q_{4} m_{6} } \right)\)

\(n_{2}\)

\(Q_{0} + Q_{1} e^{{m_{1} }} + Q_{2} e^{{m_{2} }} + Q_{3} e^{{m_{5} }} + Q_{4} e^{{m_{6} }}\)

\(m_{1}\)

\(\frac{{ - s\Pr + \sqrt {\left( {s\Pr } \right)^{2} + 4\Pr i\omega } }}{2}\)

\(m_{2}\)

\(\frac{{ - s\Pr - \sqrt {\left( {s\Pr } \right)^{2} + 4\Pr i\omega } }}{2}\)

\(m_{3}\)

\(\frac{{ - s + \sqrt {s^{2} + 4\left( {1 + i\omega \,V_{f} } \right)i\omega } }}{{2\left( {1 + i\omega \,V_{f} } \right)}}\)

\(m_{4}\)

\(\frac{{ - s - \sqrt {s^{2} + 4\left( {1 + i\omega \,V_{f} } \right)i\omega } }}{{2\left( {1 + i\omega \,V_{f} } \right)}}\)

\(m_{5}\)

\(\frac{{ - sLe_{1} + \sqrt {\left( {sLe_{1} } \right)^{2} + 4Le_{1} i\omega } }}{2}\)

\(m_{6}\)

\(\frac{{ - sLe_{1} - \sqrt {\left( {sLe_{1} } \right)^{2} + 4Le_{1} i\omega } }}{2}\)

\(m_{7}\)

\(\frac{{ - sLe_{2} + \sqrt {\left( {sLe_{2} } \right)^{2} + 4Le_{2} i\omega } }}{2}\)

\(m_{8}\)

\(\frac{{ - sLe_{2} - \sqrt {\left( {sLe_{2} } \right)^{2} + 4Le_{2} i\omega } }}{2}\)

\(Q_{0}\)

\(\frac{\xi }{i\omega }\)

\(Q_{1}\)

\(- \frac{{GrtA_{0} }}{{m_{1}^{2} \left( {1 + i\omega \,V_{f} } \right) + sm_{1} - i\omega }}\)

\(Q_{2}\)

\(- \frac{{GrtB_{0} }}{{m_{2}^{2} \left( {1 + i\omega \,V_{f} } \right) + sm_{2} - i\omega }}\)

\(Q_{3}\)

\(\frac{{Grc_{1} A_{2} }}{{m_{5}^{2} \left( {1 + i\omega \,V_{f} } \right) + sm_{5} - i\omega }}\)

\(Q_{4}\)

\(\frac{{Grc_{1} B_{2} }}{{m_{6}^{2} \left( {1 + i\omega \,V_{f} } \right) + sm_{6} - i\omega }}\)

\(Q_{5}\)

\(\frac{{Grc_{2} A_{3} }}{{m_{7}^{2} \left( {1 + i\omega \,V_{f} } \right) + sm_{7} - i\omega }}\)

\(Q_{6}\)

\(\frac{{Grc_{2} B_{3} }}{{m_{8}^{2} \left( {1 + i\omega \,V_{f} } \right) + sm_{8} - i\omega }}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinod, Y., Nagappanavar, S.N., Sangamesh et al. Unsteady triple diffusive oscillatory flow in a Voigt fluid. J Math Chem (2024). https://doi.org/10.1007/s10910-024-01591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10910-024-01591-y

Keywords

Navigation