Skip to main content
Log in

Energy and information-entropic measures of Hulthén potential in D dimension by a new approximation to centrifugal term

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Energy spectrum as well as various information theoretic measures are considered for Hulthén potential in D dimension. For a given \(\ell \ne 0\) state, approximate closed expressions are derived, following a simple intuitive approximation for accurate representation of centrifugal term. This is derived from a linear combination of two widely used Greene–Aldrich and Pekeris-type approximations. Energy, wave function, normalization constant, expectation value in r and p space, Heisenberg uncertainty relation, entropic moment of order \({\bar{\alpha }}\), Shannon entropy, Rényi entropy, disequilibrium, majorization as well as four selected complexity measures like LMC (López-Ruiz, Mancini, Calbert), shape Rényi complexity, Generalized Rényi complexity and Rényi complexity ratio are offered for different screening parameters (\(\delta \)). The effective potential is described quite satisfactorily throughout the whole domain. Obtained results are compared with theoretical energies available in literature, which shows excellent agreement. Performance of six different approximations to centrifugal term is critically discussed. An approximate analytical expression for critical screening for a specific state in arbitrary dimension is offered. Additionally, some inter-dimensional degeneracy occurring in two states, at different dimension for a particular \(\delta \) is also uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. L. Hulthén, Ark. Mat. Astron. Fys. 28A, 5 (1942); 29B, 1 (1942)

  2. L. Hulthén, M. Sugawara, in Encyclopedia of Physics, vol. 39, ed. by S. Flügge (Springer, Berlin, 1957)

  3. C.S. Lam, Y.P. Varshni, Phys. Status Solidi B 89, 103 (1978)

    Article  CAS  Google Scholar 

  4. B. Durand, L. Durand, Phys. Rev. D 23, 1092 (1981)

    Article  CAS  Google Scholar 

  5. M. Mishra, S.N. Jena, T.N. Tiwari, Pramana 32, 1 (1989)

    Article  CAS  Google Scholar 

  6. W. van Dijk, Phys. Rev. C 40, 1437 (1989)

    Article  Google Scholar 

  7. C. Eckart, Phys. Rev. 35, 1303 (1930)

    Article  CAS  Google Scholar 

  8. S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1974)

    Google Scholar 

  9. O.A. Gomes, H. Chacham, J.R. Mohallem, Phys. Rev. A 50, 228 (1994)

    Article  CAS  PubMed  Google Scholar 

  10. Y.P. Varshni, Phys. Rev. A 41, 4682 (1990)

    Article  CAS  PubMed  Google Scholar 

  11. C. Stubbins, Phys. Rev. A 48, 220 (1993)

    Article  CAS  PubMed  Google Scholar 

  12. P. Matthys, H. De Meyer, Phys. Rev. A 38, 1168 (1988)

    Article  CAS  Google Scholar 

  13. C.S. Lai, Phys. Rev. A 23, 455 (1981)

    Article  CAS  Google Scholar 

  14. E.R. Vrscay, Phys. Rev. A 33, 1433 (1986)

    Article  CAS  Google Scholar 

  15. B. Roy, R. Roychoudhury, J. Phys. A 20, 3051 (1987)

    Article  Google Scholar 

  16. A.Z. Tang, F.T. Chan, Phys. Rev. A 35, 911 (1987)

    Article  CAS  Google Scholar 

  17. H. Christiansen, L.N. Epele, H. Fanchiotti, C.A. Garcia Canal, Phys. Rev. A 40, 1760 (1989)

    Article  CAS  Google Scholar 

  18. O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A 39, 11521 (2006)

    Article  Google Scholar 

  19. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)

    Article  Google Scholar 

  20. S.M. Ikhdair, Eur. Phys. J. A 39, 307 (2009)

    Article  CAS  Google Scholar 

  21. H.I. Ahmadov, Sh.I. Jafarzade, M.V. Qocayeva, Int. J. Mod. Phys. A 30, 1550193 (2015)

    Article  CAS  Google Scholar 

  22. B. Gönül, O. Özer, Y. Cançelik, M. Koçak, Phys. Lett. A 275, 238 (2000)

    Article  Google Scholar 

  23. C.-S. Jia, J.-Y. Liu, P.-Q. Wang, Phys. Lett. A 372, 4779 (2008)

    Article  CAS  Google Scholar 

  24. C.-S. Jia, Y.-F. Diao, L.-Z. Yi, T. Chen, Int. J. Mod. Phys. A 24, 4519 (2009)

    Article  Google Scholar 

  25. J. Stanek, Cent. Eur. J. Chem. 9, 737 (2011)

    Google Scholar 

  26. S.H. Patil, J. Phys. A 34, 3153 (2001)

    Article  CAS  Google Scholar 

  27. M.R. Setare, E. Karimi, Int. J. Theor. Phys. 46, 1381 (2007)

    Article  Google Scholar 

  28. M.A. Núñez, Phys. Rev. A 47, 3620 (1993)

    Article  PubMed  Google Scholar 

  29. A.K. Roy, Pramana J. Phys. 65, 1 (2005)

    Article  Google Scholar 

  30. D. Agboola, Phys. Scr. 80, 065304 (2009)

    Article  Google Scholar 

  31. X.-Y. Gu, J.-Q. Sun, J. Phys. A 51, 022106 (2010)

    Google Scholar 

  32. A. Rényi, Probability Theory (North Holland, Amsterdam, 1970)

    Google Scholar 

  33. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  34. M.J.W. Hall, Phys. Rev. A 59, 2602 (1999)

    Article  CAS  Google Scholar 

  35. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  36. P. Ghosh, D. Nath, Int. J. Quantum Chem. 121, e26461 (2021)

    CAS  Google Scholar 

  37. D. Nath, Int. J. Quantum Chem. 121, e26816 (2021)

    Article  Google Scholar 

  38. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  Google Scholar 

  39. E. Morin, On Complexity (Hampton Press, New York, 2008)

    Google Scholar 

  40. K. Kaneko, I. Tsuda, Complex Systems: Chaos and Beyond (Springer, Berlin, 2001)

    Book  Google Scholar 

  41. I. Varga, J. Pipek, Phys. Rev. E 68, 026202 (2003)

    Article  Google Scholar 

  42. I. Bialynicki-Birula, Phys. Rev. A 74, 052101 (2006)

    Article  Google Scholar 

  43. C. Beck, F. Schlögl, Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  44. K. Życzkowski, Open Sys. Inf. Dyn. 10, 297 (2003)

    Article  Google Scholar 

  45. A.S. Parvan, T.S. Biró, Phys. Lett. A 374, 1951 (2010)

    Article  CAS  Google Scholar 

  46. J.C. Baez, v3. arXiv:1102.2098

  47. P. Jizba, T. Arimitsu, Ann. Phys. (N.Y.) 312, 17 (2004)

    Article  CAS  Google Scholar 

  48. P. Jizba, J.A. Dunningham, J. Joo, Ann. Phys. (N.Y.) 355, 87 (2015)

    Article  CAS  Google Scholar 

  49. I.V. Toranzo, D. Puertas-Centeno, J.S. Dehesa, Physica A 462, 1197 (2016)

    Article  CAS  Google Scholar 

  50. A.I. Aptekarev, D.N. Tulyakov, I.V. Toranzo, J.S. Dehesa, Eur. Phys. J. B 89, 85 (2016)

    Article  Google Scholar 

  51. Á. Nagy, E. Romera, Phys. Lett. A 373, 844 (2009)

    Article  CAS  Google Scholar 

  52. K.D. Sen (ed.), Statistical Complexity: Applications in Electronic Structure (Springer, Cham, 2011)

    Google Scholar 

  53. R. López-Ruiz, Á. Nagy, E. Romera, J. Sañudo, J. Math. Phys. 50, 123528 (2009)

    Article  Google Scholar 

  54. B. Godó, Á. Nagy, Chaos 22, 023118 (2012)

    Article  PubMed  Google Scholar 

  55. P. Sánchez-Moreno, J.C. Angulo, J.S. Dehesa, Eur. Phys. J. D 68, 212 (2014)

    Article  Google Scholar 

  56. L. Rudnicki, I.V. Toranzo, P. Sánchez-Moreno, J.S. Dehesa, Phys. Lett. A 380, 377 (2016)

    Article  CAS  Google Scholar 

  57. D. Nath, P. Ghosh, Int. J. Mod. Phys. A 34, 1950105 (2019)

    Article  CAS  Google Scholar 

  58. R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)

    Article  Google Scholar 

  59. S. López-Rosa, J.C. Angulo, J. Antolín, Physica A 388, 2081 (2009)

    Article  Google Scholar 

  60. P. Ghosh, D. Nath, Int. J. Quantum Chem. 119, e25964 (2019)

    Article  Google Scholar 

  61. C. Anteneodo, A.R. Plastino, Phys. Lett. A 223, 348 (1996)

    Article  CAS  Google Scholar 

  62. R.G. Catalán, J. Garay, R. López-Ruiz, Phys. Rev. E 66, 011102 (2002)

    Article  Google Scholar 

  63. D. Nath, A.K. Roy, Int. J. Quantum Chem. 121, e26616 (2021)

    Article  CAS  Google Scholar 

  64. D. Nath, A.K. Roy, Eur. Phys. J. Plus 136, 430 (2021)

    Article  CAS  Google Scholar 

  65. D. Nath, A.K. Roy, Chem. Phys. Lett. 780, 138909 (2021)

    Article  CAS  Google Scholar 

  66. S.M. Al-Jaber, Int. J. Theor. Phys. 37, 1289 (1998)

    Article  CAS  Google Scholar 

  67. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    Article  CAS  Google Scholar 

  68. E.D. Filho, R.M. Ricotta, Mod. Phys. Lett. A 10, 1613 (1995)

    Article  Google Scholar 

  69. M. Simsek, H. Egrifes, J. Phys. A 37, 4379 (2004)

    Article  CAS  Google Scholar 

  70. W.-C. Qiang, K. Li, W.-L. Chen, J. Phys. A 42, 205306 (2009)

    Article  Google Scholar 

  71. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhäuser, Basel, 1988)

    Book  Google Scholar 

  72. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 5th edn. (Academic, New York, 1994)

    Google Scholar 

  73. A.K. Roy, A.F. Jalbout, E.I. Proynov, Int. J. Quantum Chem. 108, 355 (2008)

    Google Scholar 

  74. A.K. Roy, J. Math. Chem. 52, 1405 (2014)

    Article  CAS  Google Scholar 

  75. A.K. Roy, Mod. Phys. Lett. 29, 1450042 (2014)

    Article  Google Scholar 

  76. S.H. Patil, J. Phys. A 17, 575 (1984)

    Article  CAS  Google Scholar 

  77. M. Demiralp, Appl. Math. Comput. 168, 1380 (2005)

    Google Scholar 

  78. A.K. Roy, Int. J. Quantum Chem. 116, 953 (2016)

    Article  CAS  Google Scholar 

  79. E. Romera, P. Sánchez-Moreno, J.S. Dehesa, J. Math. Phys. 47, 103504 (2006)

    Article  Google Scholar 

  80. J.S. Dehesa, I.V. Toranzo, Eur. Phys. J. Plus 135, 721 (2020)

    Article  Google Scholar 

  81. H. Joe, Ann. Probab. 15, 1217 (1987)

    Article  Google Scholar 

  82. D. Nath, 15 August (2021). arXiv:2106.14228v2

  83. K. Zyczkowski, Open Sys. Inf. Dyn. 10, 297 (2003)

    Article  Google Scholar 

  84. A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorizations and Its Applications (Springer, New York, 2010)

    Google Scholar 

  85. A. Galindo, M.A. Martin-Delgado, Rev. Mod. Phys. 74, 347 (2002)

    Article  Google Scholar 

  86. P. Sáanchez-Moreno, S. Zoror, J.S. Dehesa, J. Math. Phys. 52, 022105 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

AKR gratefully acknowledges financial support from MATRICS, DST-SERB, New Delhi (Sanction Order MTR/2019/000012) and partial assistance from DST-SERB (Sanction Order CRG/2019/000293) is appreciated. We thank the two anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

DN: Conceptualization, Investigation, Methodology, Writing-original draft. AKR: Conceptualization, Investigation, Methodology, Writing-original draft.

Corresponding authors

Correspondence to Debraj Nath or Amlan K. Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, D., Roy, A.K. Energy and information-entropic measures of Hulthén potential in D dimension by a new approximation to centrifugal term. J Math Chem 61, 835–858 (2023). https://doi.org/10.1007/s10910-022-01440-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01440-w

Keywords

Navigation