Skip to main content
Log in

Molien generating functions and integrity bases for the action of the \({{\mathrm {SO(3)}}}\) and \({{\mathrm {O(3)}}}\) groups on a set of vectors

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The construction of integrity bases for invariant and covariant polynomials built from a set of three dimensional vectors under the \({{\mathrm {SO(3)}}}\) and \({{\mathrm {O(3)}}}\) symmetries is presented. This paper is a follow-up to our previous work that dealt with a set of two dimensional vectors under the action of the \({{\mathrm {SO(2)}}}\) and \({{\mathrm {O(2)}}}\) groups (Dhont and Zhilinskií in J Phys A Math Theor 46:455202, 2013). The expressions of the Molien generating functions as one rational function are a useful guide to build integrity bases for the rings of invariants and the free modules of covariants. The structure of the non-free modules of covariants is more complex. In this case, we write the Molien generating function as a sum of rational functions and show that its symbolic interpretation leads to the concept of generalized integrity basis. The integrity bases and generalized integrity bases for \({\mathrm {O(3)}}\) are deduced from the \({\mathrm {SO(3)}}\) ones. The results are useful in quantum chemistry to describe the potential energy or multipole moment hypersurfaces of molecules. In particular, the generalized integrity bases that are required for the description of the electric and magnetic quadrupole moment hypersurfaces of tetratomic molecules are given for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. E.P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Pure and Applied Physics, vol. 5 (Academic Press, New York, 1959)

    Google Scholar 

  2. R. McWeeny, Symmetry: An Introduction to Group Theory and Its Applications (Dover Publications, Mineola, New York, 2002)

    Google Scholar 

  3. M. Hamermesh, Group Theory and Its Application to Physical Problems (Dover Publications, Mineola, New York, 1989)

    Google Scholar 

  4. J.A. Dieudonné, J.B. Carrell, Adv. Math. 4(1), 1 (1970). https://doi.org/10.1016/0001-8708(70)90015-0

    Article  Google Scholar 

  5. N.J.A. Sloane, Am. Math. Mon. 84(2), 82 (1977). https://doi.org/10.2307/2319929

    Article  Google Scholar 

  6. B. Sturmfels, Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation, 2nd edn. (Springer, Wien, 2008)

    Google Scholar 

  7. L. Michel, B.I. Zhilinskií, Phys. Rep. 341(1–6), 11 (2001)

    Article  CAS  Google Scholar 

  8. A. Schmelzer, J.N. Murrell, Int. J. Quantum Chem. 28(2), 287 (1985). https://doi.org/10.1002/qua.560280210

    Article  CAS  Google Scholar 

  9. J. Ischtwan, S.D. Peyerimhoff, Int. J. Quantum Chem. 45(5), 471 (1993). https://doi.org/10.1002/qua.560450505

    Article  CAS  Google Scholar 

  10. X. Huang, B.J. Braams, J.M. Bowman, J. Chem. Phys. 122(4), 044308 (12 pages). (2005). https://doi.org/10.1063/1.1834500. See also the publisher’s note, Huang X, Braams B J and Bowman J M 2007 J. Chem. Phys. 127 099904

  11. B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28(4), 577 (2009). https://doi.org/10.1080/01442350903234923

    Article  CAS  Google Scholar 

  12. Z. Xie, J.M. Bowman, J. Chem. Theory Comput. 6(1), 26 (2010). https://doi.org/10.1021/ct9004917

    Article  CAS  PubMed  Google Scholar 

  13. P. Cassam-Chenaï, F. Patras, J. Math. Chem. 44(4), 938 (2008). https://doi.org/10.1007/s10910-008-9354-y

    Article  CAS  Google Scholar 

  14. P. Cassam-Chenaï, G. Dhont, F. Patras, J. Math. Chem. 53(1), 58 (2015). https://doi.org/10.1007/s10910-014-0410-5

    Article  CAS  Google Scholar 

  15. V. Kopský, J. Phys. C Solid State Phys. 8(20), 3251 (1975). https://doi.org/10.1088/0022-3719/8/20/004

    Article  Google Scholar 

  16. V. Kopský, J. Phys. A. Math. Gen. 12(4), 429 (1979). https://doi.org/10.1088/0305-4470/12/4/004

    Article  Google Scholar 

  17. A.C. Pipkin, R.S. Rivlin, Arch. Ration. Mech. Anal. 4(1), 129 (1959). https://doi.org/10.1007/BF00281382

    Article  Google Scholar 

  18. R.S. Rivlin, Arch. Ration. Mech. Anal. 4(1), 262 (1959). https://doi.org/10.1007/BF00281392

    Article  Google Scholar 

  19. B. Desmorat, M. Olive, N. Auffray, R. Desmorat, B. Kolev, Computation of minimal covariants bases for 2D coupled constitutive laws (2020). https://hal.archives-ouvertes.fr/hal-02888267

  20. J. Taurines, M. Olive, R. Desmorat, O. Hubert, B. Kolev, Integrity bases for cubic nonlinear magnetostriction (2020). https://hal.archives-ouvertes.fr/hal-03051787

  21. G. Sartori, V. Talamini, J. Math. Phys. 39(4), 2367 (1998). https://doi.org/10.1063/1.532294

    Article  Google Scholar 

  22. M. Planat, Int. J. Geom. Methods Mod. Phys. 08(02), 303 (2011). https://doi.org/10.1142/S0219887811005142

    Article  Google Scholar 

  23. F. Holweck, J.G. Luque, J.Y. Thibon, J. Math. Phys. 55(1), 012202 (2014). https://doi.org/10.1063/1.4858336

    Article  Google Scholar 

  24. F. Holweck, J.G. Luque, J.Y. Thibon, J. Math. Phys. 58(2), 022201 (2017). https://doi.org/10.1063/1.4975098

    Article  Google Scholar 

  25. E. Rodriguez Bazan, E. Hubert, J. Symb. Comput. 107, 1 (2021). https://doi.org/10.1016/j.jsc.2021.01.004

    Article  Google Scholar 

  26. J. Li, B. Jiang, H. Guo, J. Chem. Phys. 139(20), 204103 (2013). https://doi.org/10.1063/1.4832697

    Article  CAS  PubMed  Google Scholar 

  27. K. Shao, J. Chen, Z. Zhao, D.H. Zhang, J. Chem. Phys. 145(7), 071101 (2016). https://doi.org/10.1063/1.4961454

    Article  CAS  PubMed  Google Scholar 

  28. A. Nandi, C. Qu, J.M. Bowman, J. Chem. Phys. 151(8), 084306 (2019). https://doi.org/10.1063/1.5119348

    Article  CAS  PubMed  Google Scholar 

  29. R. Stanley, Proc. Symp. Pure Math. 34, 345 (1979)

    Article  Google Scholar 

  30. G. Dhont, B.I. Zhilinskií, J. Phys. A Math. Theor. 46(45), 455202 (2013)

    Article  Google Scholar 

  31. G. Dhont, F. Patras, B.I. Zhilinskií, J. Phys. A Math. Theor. 48(3), 035201 (2015). https://doi.org/10.1088/1751-8113/48/3/035201

    Article  Google Scholar 

  32. G. Dhont, B.I. Zhilinskií, In Geometric Methods in Physics: XXXIV Workshop, Białowieża, Poland, June 28 – July 4, 2015, ed. by P. Kielanowski, T.S. Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov (Springer International Publishing, Cham, 2016), pp. 105–114. https://doi.org/10.1007/978-3-319-31756-4_11

  33. T. Molien, Sitzungsber. König. Preuss. Akad. Wiss. 52, 1152 (1897)

    Google Scholar 

  34. B.T. Sutcliffe, J. Chem. Soc. Faraday Trans. 89(14), 2321 (1993). https://doi.org/10.1039/FT9938902321

    Article  CAS  Google Scholar 

  35. F. Gatti, C. Iung, Phys. Rep. 484(1), 1 (2009). https://doi.org/10.1016/j.physrep.2009.05.003

    Article  CAS  Google Scholar 

  36. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Book  Google Scholar 

  37. M.A. Collins, D.F. Parsons, J. Chem. Phys. 99(9), 6756 (1993)

    Article  CAS  Google Scholar 

  38. H. Weyl, The Classical Groups. Their Invariants and Representations (Princeton University Press, Princeton, 1939)

    Google Scholar 

  39. M. Hochster, J.L. Roberts, Adv. Math. 13(2), 115 (1974). https://doi.org/10.1016/0001-8708(74)90067-X

    Article  Google Scholar 

  40. H. Derksen, G. Kemper, Computational Invariant Theory (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-662-48422-7

    Book  Google Scholar 

  41. M. Van den Bergh, In Proceedings of the International Congress of Mathematicians, ed. by S.D. Chatterji (Birkhäuser Basel, Basel, 1995), pp. 352–362. https://doi.org/10.1007/978-3-0348-9078-6_29

  42. R.P. Stanley, Invent. Math. 68(2), 175 (1982)

    Article  Google Scholar 

  43. H. Schmiedt, S. Schlemmer, P. Jensen, J. Chem. Phys. 143(15), 154302 (2015). https://doi.org/10.1063/1.4933001

    Article  CAS  PubMed  Google Scholar 

  44. G. Herzberg, Nature 163, 170 (1949). https://doi.org/10.1038/163170a0

    Article  CAS  Google Scholar 

  45. A. Campargue, S. Kassi, A. Yachmenev, A.A. Kyuberis, J. Küpper, S.N. Yurchenko, Phys. Rev. Res. 2, 023091 (2020). https://doi.org/10.1103/PhysRevResearch.2.023091

    Article  CAS  Google Scholar 

  46. A. Campargue, A.M. Solodov, A.A. Solodov, A. Yachmenev, S.N. Yurchenko, Phys. Chem. Chem. Phys. 22, 12476 (2020). https://doi.org/10.1039/D0CP01667E

    Article  CAS  PubMed  Google Scholar 

  47. A. Yachmenev, A. Campargue, S.N. Yurchenko, J. Küpper, J. Tennyson, J. Chem. Phys. 154(21), 211104 (2021). https://doi.org/10.1063/5.0053279

    Article  CAS  PubMed  Google Scholar 

  48. L.C. Biedenharn, J.D. Louck, Angular Momentum in Quantum Physics, Encyclopedia of Mathematics and Its Applications, vol. 8 (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  49. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980). (Eq. (3.616.7))

    Google Scholar 

  50. Eq. (3.153) of Ref. [48]

  51. Eq. (6.183) of Ref. [48]

  52. E.O. Steinborn, (Academic Press, 1973), pp. 83–112. https://doi.org/10.1016/S0065-3276(08)60559-6. Eq. (123)

  53. M.A. Blanco, M. Flórez, M. Bermejo, J. Mol. Struct. Theochem. 419(1), 19 (1997). https://doi.org/10.1016/S0166-1280(97)00185-1 (Eq. (6))

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Boris I. Zhilinskií for fruitful discussions. PCC and FP are indebted to Prof. C. Procesi for noticing a mistake in the description of the Hironaka decomposition in Ref. [13]. The statement has been amended in the present article.

Funding

Financial support for the project Application de la Théorie des Invariants à la Physique Moléculaire via a CNRS grant Projet Exploratoire Premier Soutien (PEPS) Physique Théorique et Interfaces (PTI) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. The investigation was performed by GD and PCC. The first draft of the manuscript was written by GD and PCC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Patrick Cassam-Chenaï.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Determination of the Molien generating function

1.1 Expression via an integral

In an active transformation, a rotation of angle \(\omega \) around a rotation axis whose direction is given by the unit vector \({\hat{n}}=n_x \, {\hat{e}}_x + n_y \, {\hat{e}}_y + n_z \, {\hat{e}}_z\) transforms the vector \({\mathbf {r}} = x \, {\hat{e}}_x + y \, {\hat{e}}_y + z \, {\hat{e}}_z\) into the vector \({\mathbf {r}}^\prime = x^\prime \, {\hat{e}}_x + y^\prime \, {\hat{e}}_y + z^\prime \, {\hat{e}}_z\). The initial and final coordinates are related by [48]:

$$\begin{aligned} \left( \begin{array}{c} x^\prime \\ y^\prime \\ z^\prime \end{array} \right) = R\left( \omega ,{\hat{n}}\right) \left( \begin{array}{c} x \\ y \\ z \end{array} \right) , \quad R\left( \omega ,{\hat{n}}\right) = 1_3 + N \sin \omega + N^2 \left( 1-\cos \omega \right) , \end{aligned}$$

where \(1_3\) is the \(3\times 3\) identity matrix and N is the \(3\times 3\) matrix defined as:

$$\begin{aligned} N = \left( \begin{array}{ccc} 0 &{} -n_z &{} n_y \\ n_z &{} 0 &{} -n_x \\ -n_y &{} n_x &{} 0 \end{array} \right) . \end{aligned}$$

Using spherical coordinates to give the orientation of the rotation axis \({\hat{n}}\) gives \(n_x = \sin \theta \cos \varphi \), \(n_y = \sin \theta \sin \varphi \) and \(n_z = \cos \theta \). The \(3N\times 3N\) block matrix representation \(D\left( \omega ,{\hat{n}}\right) \) of the rotation operation is:

$$\begin{aligned} D\left( \omega ,{\hat{n}}\right) =\left( \begin{array}{cccc} R\left( \omega ,{\hat{n}}\right) &{}\quad 0 &{}\quad \cdots &{}\quad 0 \\ 0 &{}\quad R\left( \omega ,{\hat{n}}\right) &{}\quad \cdots &{}\quad \quad 0 \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad R\left( \omega ,{\hat{n}}\right) \end{array} \right) , \end{aligned}$$

and one easily finds that

$$\begin{aligned} \det \left( 1_{3N}-\lambda D\left( \omega ,{\hat{n}}\right) \right) = \left[ (1-\lambda )(1-2\lambda \cos \omega +\lambda ^2)\right] ^N. \end{aligned}$$

The Molien function (1) then reduces to

$$\begin{aligned} g_{\mathrm {SO(3)}}\left( N,L;\lambda \right) = \frac{2}{\pi } \frac{1}{(1-\lambda )^N} \int _{0}^{\pi } \frac{\sin \left[ \left( 2L+1\right) \frac{\omega }{2}\right] \sin \frac{\omega }{2}}{(1-2\lambda \cos \omega +\lambda ^2)^N} d\omega . \end{aligned}$$
(29)

The integral in (29) can be evaluated by the use of the product-to-sum identity \(\sin \left[ \left( 2L+1\right) \omega /2\right] \sin \left( \omega /2\right) = \left\{ \cos \left( L \omega \right) -\cos \left[ \left( L+1\right) \omega \right] \right\} /2\) and the tabulated formula of Ref. [49]:

$$\begin{aligned}&\int _0^\pi \frac{\cos nx \, dx}{\left( 1-2a\cos x+a^2\right) ^m} \nonumber \\&\quad = \frac{a^{2m+n-2}\pi }{\left( 1-a^2\right) ^{2m-1}} \sum _{k=0}^{m-1} \left( \begin{array}{c} m+n-1 \\ k \end{array} \right) \left( \begin{array}{c} 2m-k-2 \\ m-1 \end{array} \right) \left( \frac{1-a^2}{a^2}\right) ^k, \quad a^2<1. \end{aligned}$$
(30)

1.2 Recursive formula for two or more vectors

The Molien generating function for \(N \ge 2\) can be determined from formula (29). There is however an other approach, which gives more insight in the forthcoming construction of the integrity bases. According to the triangular conditions of the theory of angular momentum, the coupling of a set of \(\left( L_1\right) \)-covariants with a set of \(\left( L_2\right) \)-covariants generates one set of \(\left( L\right) \)-covariants, with \(\left| L_1-L_2\right| \le L \le L_1+L_2\). Correspondingly the Molien generating function for \(N_1+N_2\) vectors and final representation (L) can be computed from the Molien generating functions for \(N_1\) and \(N_2\) vectors, see equation (43) of Ref. [7]:

$$\begin{aligned}&g_{\mathrm {SO(3)}}\left( N_1+N_2,L;\lambda _1,\lambda _2\right) \nonumber \\&\quad = \sum _{L_1=0}^\infty \sum _{L_2=0}^\infty \varDelta \left( L_1,L_2,L\right) g_{\mathrm {SO(3)}}\left( N_1,L_1;\lambda _1\right) g_{\mathrm {SO(3)}}\left( N_2,L_2;\lambda _2\right) , \end{aligned}$$
(31)

where \(\varDelta \left( L_1,L_2,L\right) =1\) if \(\left| L_1-L_2\right| \le L \le L_1+L_2\) and 0 otherwise.

Appendix 2: Complex and real solid harmonics

The complex solid harmonics are homogeneous polynomials of degree l in x, y, and z. Their expression is given by [50]:

$$\begin{aligned} {{{\mathscr {Y}}}}_{l,m}\left( {\mathbf {x}}\right) = \sqrt{\frac{2l+1}{4\pi } \left( l+m\right) ! \left( l-m\right) !} \sum _k \frac{\left( -x-iy\right) ^{k+m} \left( x-iy\right) ^k z^{l-2k-m}}{2^{2k+m} \left( k+m\right) ! k! \left( l-m-2k\right) !}, \end{aligned}$$

where \({\mathbf {x}}\) is the triplet of coordinates \(\left( x,y,z\right) \). The complex solid harmonics are complex-valued functions for \(m \ne 0\) and satisfy the property

$$\begin{aligned} {{{\mathscr {Y}}}}_{l,m}\left( {\mathbf {x}}\right) ^* = \left( -1\right) ^m {{{\mathscr {Y}}}}_{l,-m}\left( {\mathbf {x}}\right) . \end{aligned}$$

Biedenharn and Louck define in Ref. [48] the real solid harmonics \(\bar{{{\mathscr {Y}}}}_{l,m}\) through the linear combinations of complex solid harmonics [51]:

$$\begin{aligned} \bar{{{\mathscr {Y}}}}_{l,m}\left( {\mathbf {x}}\right)= & {} -\frac{1}{\sqrt{2}} \left[ {{{\mathscr {Y}}}}_{l,m}\left( {\mathbf {x}}\right) + \left( -1\right) ^m {{\mathscr {Y}}}_{l,-m}\left( {\mathbf {x}}\right) \right] , \\ \bar{{{\mathscr {Y}}}}_{l,0}\left( {\mathbf {x}}\right)= & {} {{\mathscr {Y}}}_{l,0}\left( {\mathbf {x}}\right) , \\ \bar{{{\mathscr {Y}}}}_{l,-m}\left( {\mathbf {x}}\right)= & {} \frac{i}{\sqrt{2}} \left[ {{\mathscr {Y}}}_{l,m}\left( {\mathbf {x}}\right) - \left( -1\right) ^m {{\mathscr {Y}}}_{l,-m}\left( {\mathbf {x}}\right) \right] , \end{aligned}$$

with \(m \in \left\{ l,l-1,\cdots ,1\right\} \).

Other linear combinations of complex solid harmonics exist in the litterature. Steinborn [52] or Blanco et al. [53] use:

$$\begin{aligned} \tilde{{\mathscr {Y}}}_{l,m}\left( {\mathbf {x}}\right)= & {} \frac{\left( -1\right) ^m}{\sqrt{2}} \left[ {\mathscr {Y}}_{l,m}\left( {\mathbf {x}}\right) + \left( -1\right) ^m {\mathscr {Y}}_{l,-m}\left( {\mathbf {x}}\right) \right] , \\ \tilde{{\mathscr {Y}}}_{l,0}\left( {\mathbf {x}}\right)= & {} {\mathscr {Y}}_{l,0}\left( {\mathbf {x}}\right) , \\ \tilde{{\mathscr {Y}}}_{l,-m}\left( {\mathbf {x}}\right)= & {} \frac{\left( -1\right) ^m}{i\sqrt{2}} \left[ {\mathscr {Y}}_{l,m}\left( {\mathbf {x}}\right) - \left( -1\right) ^m {\mathscr {Y}}_{l,-m}\left( {\mathbf {x}}\right) \right] , \end{aligned}$$

with \(m \in \left\{ l,l-1,\ldots ,1\right\} \). The two definitions of real solid harmonics are identical except for m even where the two definitions give expressions with opposite sign. In the main text, we use \(\tilde{{\mathscr {Y}}}_{l,m}\) as real solid harmonics. Their expression for up to \(L=3\) are given below:

$$\begin{aligned}&\sqrt{4\pi } \tilde{{\mathscr {Y}}}_{0,0}\left( {\mathbf {x}}\right) = 1\\&\sqrt{\frac{4\pi }{3}} \left( \begin{array}{c} \tilde{{\mathscr {Y}}}_{1,1}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{1,0}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{1,-1}\left( {\mathbf {x}}\right) \end{array} \right) = \left( \begin{array}{c} x \\ z \\ y \end{array} \right) \\&\sqrt{\frac{4\pi }{5}} \left( \begin{array}{c} \tilde{{\mathscr {Y}}}_{2,2}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{2,1}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{2,0}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{2,-1}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{2,-2}\left( {\mathbf {x}}\right) \end{array} \right) = \left( \begin{array}{c} \frac{\sqrt{3}}{2}\left( x^2 - y^2\right) \\ \sqrt{3}xz \\ \frac{1}{2}\left( 2z^2-x^2-y^2\right) \\ \sqrt{3}yz \\ \sqrt{3}xy \end{array} \right) \\&\sqrt{\frac{4\pi }{7}} \left( \begin{array}{c} \tilde{{\mathscr {Y}}}_{3,3}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{3,2}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{3,1}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{3,0}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{3,-1}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{3,-2}\left( {\mathbf {x}}\right) \\ \tilde{{\mathscr {Y}}}_{3,-3}\left( {\mathbf {x}}\right) \end{array} \right) = \left( \begin{array}{c} \frac{\sqrt{10}}{4} x\left( x^2-3y^2\right) \\ \frac{\sqrt{15}}{2}z\left( x^2-y^2\right) \\ \frac{\sqrt{6}}{4} \left( 4z^2-x^2-y^2\right) x \\ \frac{1}{2}z\left( 2z^2-3x^2-3y^2\right) \\ \frac{\sqrt{6}}{4}\left( 4z^2-x^2-y^2\right) y \\ \sqrt{15}xyz \\ \frac{\sqrt{10}}{4} y\left( 3x^2-y^2\right) \end{array} \right) \end{aligned}$$

Appendix 3: Molien generating function for four vectors

The Molien generating function for four vectors can be written as a single rational function:

$$\begin{aligned} g_{\mathrm {SO(3)}}^{\left( a\right) }\left( 4,L;\lambda \right) = \frac{{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( a\right) }\left( 4,L;\lambda \right) }{( 1-\lambda ^2 )^9}, \end{aligned}$$
(32)

with its numerator equal to:

$$\begin{aligned} {\mathscr {N}}_{\mathrm {SO(3)}}^{\left( a\right) }\left( 4,L;\lambda \right)= & {} \frac{(L+3)(L+2)(L+1)}{6} \lambda ^L + \frac{(L+3)(L+2)L}{2} \lambda ^{L+1} \nonumber \\&+\,\frac{(L+3)(L+2)(L+1)}{6} \lambda ^{L+2} - \frac{(L+3)(L-2)(5L+4)}{6} \lambda ^{L+3} \nonumber \\&-\, \frac{(L+3)(L-2)(5L+1)}{6} \lambda ^{L+4} + \frac{L(L-1)(L-2)}{6} \lambda ^{L+5} \nonumber \\&+\, \frac{(L+1)(L-1)(L-2)}{2} \lambda ^{L+6} + \frac{L(L-1)(L-2)}{6} \lambda ^{L+7}. \end{aligned}$$
(33)

The Molien generating function (32) has non-negative coefficients in its numerator for \(L\in \left\{ 0,1,2\right\} \). Negative coefficients appear for \(L\ge 3\). However, the Molien function can be rewritten as Eq. (34), which has only non-negative coefficients in the numerator for \(L\in \left\{ 2,3,4\right\} \),

$$\begin{aligned}&g_{\mathrm {SO(3)}}^{\left( b\right) }\left( 4,L;\lambda \right) \nonumber \\&\quad = \frac{\frac{(L+3)(L+2)(L+1)}{6} \lambda ^L + 4(2L+1) \lambda ^{L+1} + (-\frac{1}{6}L^3-L^2+\frac{37}{6}L+3) \lambda ^{L+2}}{(1-\lambda ^2)^9} \nonumber \\&\qquad +\,\frac{2(L-2)(2L+1) \lambda ^{L+1} - \frac{(L-2)(L^2-16L-9)}{6} \lambda ^{L+2}}{(1-\lambda ^2)^8} \nonumber \\&\qquad +\,\frac{\frac{L(L-1)(L-2)}{2} \lambda ^{L+1} + \frac{(L+1)(L-1)(L-2)}{2} \lambda ^{L+2} + \frac{L(L-1)(L-2)}{6} \lambda ^{L+3}}{(1-\lambda ^2)^7}, \end{aligned}$$
(34)

as (35), which has only non-negative coefficients in the numerator for L between 5 and 16,

$$\begin{aligned}&g_{\mathrm {SO(3)}}^{\left( c\right) }\left( 4,L;\lambda \right) \nonumber \\&\quad = \frac{4(2L+1) \lambda ^L + 4(2L+1) \lambda ^{L+1}}{(1-\lambda ^2)^9} \nonumber \\&\qquad +\,\frac{(\frac{1}{6}L^3+L^2-\frac{37}{6}L-3) \lambda ^L + 2(L-2)(2L+1) \lambda ^{L+1} - \frac{(L-2)(L^2-16L-9)}{6} \lambda ^{L+2}}{(1-\lambda ^2)^8} \nonumber \\&\qquad +\,\frac{\frac{L(L-1)(L-2)}{2} \lambda ^{L+1} + \frac{(L+1)(L-1)(L-2)}{2} \lambda ^{L+2} + \frac{L(L-1)(L-2)}{6} \lambda ^{L+3}}{(1-\lambda ^2)^7}, \end{aligned}$$
(35)

and as Eq. (36), which has only non-negative coefficients in the numerator for \(L\ge 17\),

$$\begin{aligned}&g_{\mathrm {SO(3)}}^{\left( d\right) }\left( 4,L;\lambda \right) \nonumber \\&\quad = \frac{4(2L+1) \lambda ^L + 4(2L+1) \lambda ^{L+1}}{(1-\lambda ^2)^9} \nonumber \\&\qquad +\,\frac{2(L-3)(2L+1) \lambda ^L + 2(L-2)(2L+1) \lambda ^{L+1}}{(1-\lambda ^2)^8} \nonumber \\&\qquad +\,\frac{\frac{(L-2)(L^2-16L-9)}{6} \lambda ^L + \frac{L(L-1)(L-2)}{2} \lambda ^{L+1} + \frac{(L+1)(L-1)(L-2)}{2} \lambda ^{L+2} + \frac{L(L-1)(L-2)}{6} \lambda ^{L+3}}{(1-\lambda ^2)^7}. \end{aligned}$$
(36)

Appendix 4: Molien generating function for five vectors

The Molien generating function for five vectors can be written as a single rational function:

$$\begin{aligned} g_{\mathrm {SO(3)}}^{\left( a\right) }\left( 5,L;\lambda \right) = \frac{{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( a\right) }\left( 5,L;\lambda \right) }{\left( 1-\lambda ^2\right) ^{12}}, \end{aligned}$$
(37)

with the numerator equal to:

$$\begin{aligned}&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( a\right) }\left( 5, L ; \lambda \right) = \frac{(L+4)(L+3)(L+2)(L+1)}{24} \lambda ^L + \frac{(L+4)(L+3)(L+2)L}{6} \lambda ^{L+1} \nonumber \\&\qquad +\, \frac{(L+4)(L+3)(L+2)(L+1)}{8} \lambda ^{L+2} - \frac{(L+4)(L+3)(L^2-3L-\frac{5}{2})}{3} \lambda ^{L+3} \nonumber \\&\qquad -\, \frac{(L+4)(L+3)(L-3)(7L+2)}{12} \lambda ^{L+4} - \frac{(L+4)(L-3)(2L+1)}{2} \lambda ^{L+5} \nonumber \\&\qquad +\, \frac{(L+4)(L-2)(L-3)(7L+5)}{12} \lambda ^{L+6} + \frac{(L-2)(L-3)(L^2+5L+\frac{3}{2})}{3} \lambda ^{L+7} \nonumber \\&\qquad - \,\frac{L(L-1)(L-2)(L-3)}{8} \lambda ^{L+8} - \frac{(L+1)(L-1)(L-2)(L-3)}{6} \lambda ^{L+9} \nonumber \\&\qquad -\, \frac{L(L-1)(L-2)(L-3)}{24} \lambda ^{L+10}. \end{aligned}$$
(38)

The six next alternative expressions of the Molien generating function are written as a sum over four rational functions:

$$\begin{aligned}&g_{\mathrm {SO(3)}}^{\left( x\right) }\left( 5,L;\lambda \right) \\&\quad = \frac{{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( x\right) ,1}\left( 5,L;\lambda \right) }{\left( 1-\lambda ^2\right) ^{12}} + \frac{{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( x\right) ,2}\left( 5,L;\lambda \right) }{\left( 1-\lambda ^2\right) ^{11}}\\&\qquad +\, \frac{{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( x\right) ,3}\left( 5,L;\lambda \right) }{\left( 1-\lambda ^2\right) ^{10}}\\&\qquad +\, \frac{{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( x\right) ,4}\left( 5,L;\lambda \right) }{\left( 1-\lambda ^2\right) ^{9}}, \, x \in \left\{ b,c,d,e,f,g\right\} , \end{aligned}$$

and provide for any value of L at least one expression with only non-negative coefficients in the numerators. An heuristic to derive these numerators is presented in Sect. 4.2.2.

1.1 Numerators of the Molien generating function (b)

$$\begin{aligned}&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( b\right) ,1}\left( 5,L;\lambda \right) \\&\quad = \frac{(L+4)(L+3)(L+2)(L+1)}{24} \lambda ^L + 20(2L+1) \lambda ^{L+1} \\&\qquad +\, \left( -\frac{1}{24}L^4-\frac{5}{12}L^3-\frac{35}{24}L^2+\frac{455}{12}L+19\right) \lambda ^{L+2} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( b\right) ,2}\left( 5,L;\lambda \right) \\&\quad = \left( \frac{1}{6}L^4+\frac{3}{2}L^3+\frac{13}{3}L^2-36L-20\right) \lambda ^{L+1} \\&\qquad -\, \frac{(L-3)(L^3+13L^2-406L-208)}{24} \lambda ^{L+2} \\&\qquad - \,\frac{(L-3)(L^3+12L^2-58L-30)}{6} \lambda ^{L+3} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( b\right) ,3}\left( 5,L;\lambda \right) \\&\quad =- \frac{(L-2)(L-3)(L^2-81L-40)}{24} \lambda ^{L+2} - \frac{(L-2)(L-3)(L^2-10L-6)}{6} \lambda ^{L+3} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( b\right) ,4}\left( 5,L;\lambda \right) \\&\quad = \frac{L(L-1)(L-2)(L-3)}{4} \lambda ^{L+2} + \frac{(L+1)(L-1)(L-2)(L-3)}{6} \lambda ^{L+3} \\&\qquad +\, \frac{L(L-1)(L-2)(L-3)}{24} \lambda ^{L+4} \end{aligned}$$

1.2 Numerators of the Molien generating function (c)

$$\begin{aligned}&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( c\right) ,1}\left( 5,L;\lambda \right) \\&\quad = \frac{(L+4)(L+3)(L+2)(L+1)}{24} \lambda ^L + 20(2L+1) \lambda ^{L+1} \\&\qquad +\, \left( -\frac{1}{24}L^4-\frac{5}{12}L^3-\frac{35}{24}L^2+\frac{455}{12}L+19\right) \lambda ^{L+2} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( c\right) ,2}\left( 5,L;\lambda \right) \\&\quad = 5(2L+1)(2L-7) \lambda ^{L+1} - \frac{(L-3)(L^3+13L^2-406L-208)}{24} \lambda ^{L+2} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( c\right) ,3}\left( 5,L;\lambda \right) \\&\quad = \frac{(L-3)(L^3+12L^2-58L-30)}{6} \lambda ^{L+1} \\&\qquad - \,\frac{(L-2)(L-3)(L^2-81L-40)}{24} \lambda ^{L+2} \\&\qquad -\, \frac{(L-2)(L-3)(L^2-10L-6)}{6} \lambda ^{L+3} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( c\right) ,4}\left( 5,L;\lambda \right) \\&\quad = \frac{L(L-1)(L-2)(L-3)}{4} \lambda ^{L+2} + \frac{(L+1)(L-1)(L-2)(L-3)}{6} \lambda ^{L+3} \\&\qquad +\, \frac{L(L-1)(L-2)(L-3)}{24} \lambda ^{L+4} \end{aligned}$$

1.3 Numerators of the Molien generating function (d)

$$\begin{aligned}&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( d\right) ,1}\left( 5,L;\lambda \right) \\&\quad = 20(2L+1) \lambda ^L + 20(2L+1) \lambda ^{L+1} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( d\right) ,2}\left( 5,L;\lambda \right) \\&\quad = \left( \frac{1}{24}L^4+\frac{5}{12}L^3+\frac{35}{24}L^2-\frac{455}{12}L-19\right) \lambda ^L + 5(2L+1)(2L-7) \lambda ^{L+1} \\&\qquad - \,\frac{(L-3)(L^3+13L^2-406L-208)}{24} \lambda ^{L+2} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( d\right) ,3}\left( 5,L;\lambda \right) \\&\quad = \frac{(L-3)(L^3+12L^2-58L-30)}{6} \lambda ^{L+1} - \frac{(L-2)(L-3)(L^2-81L-40)}{24} \lambda ^{L+2} \\&\qquad -\, \frac{(L-2)(L-3)(L^2-10L-6)}{6} \lambda ^{L+3} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( d\right) ,4}\left( 5,L;\lambda \right) \\&\quad = \frac{L(L-1)(L-2)(L-3)}{4} \lambda ^{L+2} + \frac{(L+1)(L-1)(L-2)(L-3)}{6} \lambda ^{L+3} \\&\qquad +\, \frac{L(L-1)(L-2)(L-3)}{24} \lambda ^{L+4} \end{aligned}$$

1.4 Numerators of the Molien generating function (e)

$$\begin{aligned}&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( e\right) ,1}\left( 5,L;\lambda \right) \\&\quad = 20(2L+1) \lambda ^L + 20(2L+1) \lambda ^{L+1} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( e\right) ,2}\left( 5,L;\lambda \right) \\&\quad = \left( \frac{1}{24}L^4+\frac{5}{12}L^3+\frac{35}{24}L^2-\frac{455}{12}L-19\right) \lambda ^L + 5(2L+1)(2L-7) \lambda ^{L+1} \\&\qquad -\, \frac{(L-3)(L^3+13L^2-406L-208)}{24} \lambda ^{L+2} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( e\right) ,3}\left( 5,L;\lambda \right) \\&\quad = (L-3)(2L-7)(2L+1) \lambda ^{L+1} - \frac{(L-2)(L-3)(L^2-81L-40)}{24} \lambda ^{L+2} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( e\right) ,4}\left( 5,L;\lambda \right) \\&\quad = \frac{(L-2)(L-3)(L^2-10L-6)}{6} \lambda ^{L+1} + \frac{L(L-1)(L-2)(L-3)}{4} \lambda ^{L+2} \\&\qquad +\, \frac{(L+1)(L-1)(L-2)(L-3)}{6} \lambda ^{L+3} + \frac{L(L-1)(L-2)(L-3)}{24} \lambda ^{L+4} \end{aligned}$$

1.5 Numerators of the Molien generating function (f)

$$\begin{aligned}&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( f\right) ,1}\left( 5,L;\lambda \right) \\&\quad = 20(2L+1) \lambda ^L + 20(2L+1) \lambda ^{L+1} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( f\right) ,2}\left( 5,L;\lambda \right) \\&\quad = 5(2L+1)(2L-9) \lambda ^L + 5(2L+1)(2L-7) \lambda ^{L+1} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( f\right) ,3}\left( 5,L;\lambda \right) \\&\quad = \frac{(L-3)(L^3+13L^2-406L-208)}{24} \lambda ^L + (L-3)(2L+1)(2L-7) \lambda ^{L+1} \\&\qquad -\, \frac{(L-2)(L-3)(L^2-81L-40)}{24} \lambda ^{L+2} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( f\right) ,4}\left( 5,L;\lambda \right) \\&\quad = \frac{(L-2)(L-3)(L^2-10L-6)}{6} \lambda ^{L+1} + \frac{L(L-1)(L-2)(L-3)}{4} \lambda ^{L+2} \\&\qquad +\, \frac{(L+1)(L-1)(L-2)(L-3)}{6} \lambda ^{L+3} + \frac{L(L-1)(L-2)(L-3)}{24} \lambda ^{L+4} \end{aligned}$$

1.6 Numerators of the Molien generating function (g)

$$\begin{aligned}&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( g\right) ,1}\left( 5,L;\lambda \right) \\&\quad = 20(2L+1) \lambda ^L + 20(2L+1) \lambda ^{L+1} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( g\right) ,2}\left( 5,L;\lambda \right) \\&\quad = 5(2L+1)(2L-9) \lambda ^L + 5(2L+1)(2L-7) \lambda ^{L+1} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( g\right) ,3}\left( 5,L;\lambda \right) \\&\quad = 2(L-3)(L-6)(2L+1) \lambda ^L + (L-3)(2L+1)(2L-7) \lambda ^{L+1} \\&{\mathscr {N}}_{\mathrm {SO(3)}}^{\left( g\right) ,4}\left( 5,L;\lambda \right) \\&\quad = \frac{(L-2)(L-3)(L^2-81L-40)}{24} \lambda ^L + \frac{(L-2)(L-3)(L^2-10L-6)}{6} \lambda ^{L+1} \\&\qquad +\, \frac{L(L-1)(L-2)(L-3)}{4} \lambda ^{L+2} + \frac{(L+1)(L-1)(L-2)(L-3)}{6} \lambda ^{L+3} \\&\qquad + \,\frac{L(L-1)(L-2)(L-3)}{24} \lambda ^{L+4} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhont, G., Cassam-Chenaï, P. & Patras, F. Molien generating functions and integrity bases for the action of the \({{\mathrm {SO(3)}}}\) and \({{\mathrm {O(3)}}}\) groups on a set of vectors. J Math Chem 59, 2294–2326 (2021). https://doi.org/10.1007/s10910-021-01277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-021-01277-9

Keywords

Mathematics Subject Classification

Navigation