Skip to main content
Log in

Nonlinear supratransmission in fractional wave systems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we review various nonlinear systems with fractional derivatives of the Riesz type in space. Concretely, we consider partial differential equations with fractional Laplacians, which consider potentials of the Fermi–Pasta–Ulam, sine-Gordon, Klein–Gordon and double sine-Gordon. These regimes have the important feature that some energy functional is available in the fractional scenario. For each of these cases, we propose numerical techniques to approximate their solutions, and some discrete functionals are provided in order to approximate the energy dynamics of the systems. The methodologies are energy-preserving (conservative) techniques which are employed then to investigate the presence of nonlinear supratransmission in those systems. It is well known that such process is present in continuous Fermi–Pasta–Ulam, sine-Gordon, Klein–Gordon and double sine-Gordon regimes when the derivatives are of integer order. As one of the most important outcomes of this survey, the computer simulations confirm that this process is also present when the derivatives are of fractional order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Abbaszade, M. Mohebbi, Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry. Iran. J. Math. Chem. 3(2), 195–220 (2012)

    Google Scholar 

  2. G. Alfimov, T. Pierantozzi, L. Vázquez, Numerical study of a fractional sine-Gordon equation. Fract. Differ. Appl. FDA 4, 153–162 (2004)

    Google Scholar 

  3. O. Belhamiti, B. Absar, A numerical study of fractional order reverse osmosis desalination model using legendre wavelet approximation. Iran. J. Math. Chem. 8(4), 345–364 (2017)

    Google Scholar 

  4. F.P. Benetti, A.C. Ribeiro-Teixeira, R. Pakter, Y. Levin, Nonequilibrium stationary states of 3D self-gravitating systems. Phys. Rev. Lett. 113(10), 100,602 (2014)

    Article  CAS  Google Scholar 

  5. G.N.C. Beukam, J.P. Nguenang, A. Trombettoni, T. Dauxois, R. Khomeriki, S. Ruffo, Fermi-pasta-ulam chains with harmonic and anharmonic long-range interactions. Commun. Nonlinear Sci. Numer. Simul. 60(1), 115–127 (2018)

    Google Scholar 

  6. A.R. Bishop et al., Nonlinear Evolution Equations And Dynamical Systems Needs’ 94 (World Scientific, New York, 1995)

    Google Scholar 

  7. B. Bodo, S. Morfu, P. Marquié, M. Rosse, A Klein–Gordon electronic network exhibiting the supratransmission effect. Electron. Lett. 46(2), 123 (2010)

    Article  Google Scholar 

  8. A. Campa, T. Dauxois, S. Ruffo, Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480(3), 57–159 (2009)

    Article  CAS  Google Scholar 

  9. J.G. Caputo, J. Leon, A. Spire, Nonlinear energy transmission in the gap. Phys. Lett. A 283(1), 129–135 (2001)

    Article  CAS  Google Scholar 

  10. D. Chevriaux, R. Khomeriki, J. Leon, Theory of a Josephson junction parallel array detector sensitive to very weak signals. Phys. Rev. B 73(21), 214,516 (2006)

    Article  CAS  Google Scholar 

  11. H. Christodoulidi, T. Bountis, C. Tsallis, L. Drossos, Dynamics and statistics of the Fermi–Pasta–Ulam \(\beta \)-model with different ranges of particle interactions. J. Stat. Mech. Theory Exp. 2016(12), 123,206 (2016)

    Article  Google Scholar 

  12. H. Christodoulidi, C. Tsallis, T. Bountis, Fermi–Pasta–Ulam model with long-range interactions: dynamics and thermostatistics. EPL (Europhys. Lett.) 108(4), 40,006 (2014)

    Article  CAS  Google Scholar 

  13. A. Coronel-Escamilla, J. Gómez-Aguilar, E. Alvarado-Méndez, G. Guerrero-Ramírez, R. Escobar-Jiménez, Fractional dynamics of charged particles in magnetic fields. Int. J. Mod. Phys. C 27(08), 1650,084 (2016)

    Article  Google Scholar 

  14. K. Diethelm, A.D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, in Scientific Computing in Chemical Engineering II, ed. by F. Keil, W. Mackens, H. Voss, J. Werther (Springer, Berlin, 1999), pp. 217–224

    Chapter  Google Scholar 

  15. A.L. Fabian, R. Kohl, A. Biswas, Perturbation of topological solitons due to sine-Gordon equation and its type. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1227–1244 (2009)

    Article  Google Scholar 

  16. E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems. Los Alamos Report LA–1940, vol 978 (1955)

  17. A. Friedman, Foundations of Modern Analysis (Courier Corporation, New York, 1970)

    Google Scholar 

  18. F. Geniet, J. Leon, Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. 89(13), 134,102 (2002)

    Article  CAS  Google Scholar 

  19. F. Geniet, J. Leon, Nonlinear supratransmission. J. Phys. Condens. Matter 15(17), 2933 (2003)

    Article  CAS  Google Scholar 

  20. R. Ishiwata, Y. Sugiyama, Relationships between power-law long-range interactions and fractional mechanics. Phys. A Stat. Mech. Appl. 391(23), 5827–5838 (2012)

    Article  Google Scholar 

  21. R. Khomeriki, Nonlinear band gap transmission in optical waveguide arrays. Phys. Rev. Lett. 92(6), 063,905 (2004)

    Article  CAS  Google Scholar 

  22. R. Khomeriki, J. Leon, Bistability in the sine-Gordon equation: the ideal switch. Phys. Rev. E 71(5), 056,620 (2005)

    Article  CAS  Google Scholar 

  23. R. Khomeriki, S. Lepri, S. Ruffo, Nonlinear supratransmission and bistability in the Fermi–Pasta–Ulam model. Phys. Rev. E 70(6), 066,626 (2004)

    Article  CAS  Google Scholar 

  24. N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66(5), 056,108 (2002)

    Article  CAS  Google Scholar 

  25. I. Latella, A. Pérez-Madrid, A. Campa, L. Casetti, S. Ruffo, Long-range interacting systems in the unconstrained ensemble. Phys. Rev. E 95(1), 012,140 (2017)

    Article  Google Scholar 

  26. J. Leon, A. Spire, Gap soliton formation by nonlinear supratransmission in Bragg media. Phys. Lett. A 327(5), 474–480 (2004)

    Article  CAS  Google Scholar 

  27. P.S. Lomdahl, O.H. Soerensen, P.L. Christiansen, Soliton excitations in Josephson tunnel junctions. Phys. Rev. B 25(9), 5737 (1982)

    Article  Google Scholar 

  28. J.E. Macías-Díaz, A computational technique with multiple properties of consistency in the study of modified \(\beta \)-Fermi–Pasta–Ulam chains. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1740–1753 (2010)

    Article  Google Scholar 

  29. J.E. Macías-Díaz, Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 46, 89–102 (2017)

    Article  Google Scholar 

  30. J.E. Macías-Díaz, Persistence of nonlinear hysteresis in fractional models of Josephson transmission lines. Commun. Nonlinear Sci. Numer. Simul. 53, 31–43 (2017)

    Article  Google Scholar 

  31. J.E. Macías-Díaz, An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun. Nonlinear Sci. Numer. Simul. 59, 67–87 (2018)

    Article  Google Scholar 

  32. J.E. Macías-Díaz, Computational study of the nonlinear bistability in a relativistic wave equation with anomalous diffusion. Int. J. Mod. Phys. C 29, 1850054 (2018)

    Article  Google Scholar 

  33. J.E. Macías-Díaz, Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi–Pasta–Ulam chains. Commun. Nonlinear Sci. Numer. Simul. 55, 248–264 (2018)

    Article  Google Scholar 

  34. J.E. Macías-Díaz, A.S. Hendy, R.H. de Staelen, A pseudo energy-invariant method forrelativistic wave equations with Riesz space-fractional derivatives. Comput. Phys. Commun. 224, 98–107 (2017)

    Article  CAS  Google Scholar 

  35. J.E. Macías-Díaz, I.E. Medina-Ramírez, Nonlinear supratransmission and nonlinear bistability in a forced linear array of anharmonic oscillators: a computational study. Int. J. Mod. Phys. C 20(12), 1911–1923 (2009)

    Article  Google Scholar 

  36. J.E. Macías-Díaz, A. Puri, An energy-based computational method in the analysis of the transmission of energy in a chain of coupled oscillators. J. Comput. Appl. Math. 214(2), 393–405 (2008)

    Article  Google Scholar 

  37. J.E. Macías-Díaz, A. Puri, On the transmission of binary bits in discrete Josephson-junction arrays. Phys. Lett. A 372(30), 5004–5010 (2008)

    Article  CAS  Google Scholar 

  38. J.E. Macías-Díaz, J. Ruiz-Ramírez, L.A. Flores-Oropeza, Computational study of the transmission of energy in a two-dimensional lattice with nearest-neighbor interactions. Int. J. Mod. Phys. C 20(12), 1933–1943 (2009)

    Article  Google Scholar 

  39. A. Miele, J. Dekker, Long-range chromosomal interactions and gene regulation. Mol. Biosyst. 4(11), 1046–1057 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. G. Miloshevich, J.P. Nguenang, T. Dauxois, R. Khomeriki, S. Ruffo, Traveling solitons in long-range oscillator chains. J. Phys. A Math. Theor. 50(12), 12LT02 (2017)

    Article  Google Scholar 

  41. S. Morfu, B. Bodo,P. Marquié, M. Rossé, Supratransmission dans une ligneélectrique de Klein–Gordon, in Rencontre du Non linéaire, ISBN 978-2-9538596-6-9, pp. 61–66. Non linéaire publications BP12 78801 st etienne du Rouvray Cedex (2017)

  42. A.T. Motcheyo, J.T. Tchameu, S. Fewo, C. Tchawoua, T. Kofane, Chameleons behavior of modulable nonlinear electrical transmission line. Commun. Nonlinear Sci. Numer. Simul. 53, 22–30 (2017)

    Article  Google Scholar 

  43. A.T. Motcheyo, J.T. Tchameu, M.S. Siewe, C. Tchawoua, Homoclinic nonlinear band gap transmission threshold in discrete optical waveguide arrays. Commun. Nonlinear Sci. Numer. Simul. 50, 29–34 (2017)

    Article  Google Scholar 

  44. A.T. Motcheyo, C. Tchawoua, M.S. Siewe, J.T. Tchameu, Supratransmission phenomenon in a discrete electrical lattice with nonlinear dispersion. Commun. Nonlinear Sci. Numer. Simul. 18(4), 946–952 (2013)

    Article  Google Scholar 

  45. K.B. Oldham, Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)

    Article  Google Scholar 

  46. M. Remoissenet, Waves Called Solitons: Concepts and Experiments, 1st edn. (Springer, New York, 2013)

    Google Scholar 

  47. H. Susanto, Boundary driven waveguide arrays: supratransmission and saddle-node bifurcation. SIAM J. Appl. Math. 69(1), 111–125 (2008)

    Article  Google Scholar 

  48. H. Susanto, N. Karjanto, Calculated threshold of supratransmission phenomena in waveguide arrays with saturable nonlinearity. J. Nonlinear Opt. Phys. Mater. 17(02), 159–165 (2008)

    Article  Google Scholar 

  49. V.E. Tarasov, Continuous limit of discrete systems with long-range interaction. J. Phys. A Math. Gen. 39(48), 14,895 (2006)

    Article  Google Scholar 

  50. V.E. Tarasov, E.C. Aifantis, Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(1), 197–227 (2015)

    Article  Google Scholar 

  51. V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885–898 (2006)

    Article  Google Scholar 

  52. V.E. Tarasov, G.M. Zaslavsky, Conservation laws and hamiltons equations for systems with long-range interaction and memory. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1860–1878 (2008)

    Article  Google Scholar 

  53. J.T. Tchameu, C. Tchawoua, A.T. Motcheyo, Nonlinear supratransmission of multibreathers in discrete nonlinear Schrödinger equation with saturable nonlinearities. Wave Motion 65, 112–118 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the anonymous reviewers and the associate editor in charge of handling this manuscript, for all the invaluable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Macías-Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piña-Villalpando, L.E., Macías-Díaz, J.E. & Kurmyshev, E. Nonlinear supratransmission in fractional wave systems. J Math Chem 57, 790–811 (2019). https://doi.org/10.1007/s10910-018-0983-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0983-5

Keywords

Mathematics Subject Classification

Navigation