Journal of Mathematical Chemistry

, Volume 56, Issue 1, pp 193–212 | Cite as

Improved algorithms for symmetry analysis: structure preserving permutations

  • Gil AlonEmail author
  • Inbal Tuvi-AradEmail author
Original Paper


We propose an improved algorithm for calculating Avnir’s continuous symmetry and chirality measures of molecules. These measures evaluate the deviation of a given structure from symmetry by calculating the distance between the structure and its nearest symmetric counterpart. Our new algorithm utilizes structural properties of the given molecule to increase the accuracy of the calculation and dramatically reduce the running time by up to tens orders of magnitude. Consequently, a wide variety of molecules of medium size with ca. 100 atoms and even more can be analyzed within seconds. Numerical evidence of the algorithm’s efficiency is presented for several families of molecules such as helicenes, porphyrins, dendrimers building blocks, fullerene and more. The ease and efficiency of the calculation make the continuous symmetry and chirality measures promising descriptors for integration in quantitative structure–activity relationship tools, as well as chemical databases and molecular visualization software.


Chirality Continuous symmetry measures Graph automorphism Permutations QSAR descriptors 

Mathematics Subject Classification

92E10 92-08 05C85 



Supported by the Israel Science Foundation (Grant 411/15). We are sincerely grateful for fruitful discussions with Prof. David Avnir (The Hebrew University of Jerusalem). The programming of the new code was done by Itay Zandbank and Devora Witty (The scientific software company, Israel). We are thankful to Sagiv Barhoom (The Open University) for his help in programming and Yaffa Shalit (The Open University) for her help in testing the code. Researchers interested in using the CSM code are welcome to contact Dr. Tuvi-Arad.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


This study was funded by the Israel Science Foundation (Grant Number 411/15).


  1. 1.
    M. Petitjean, Entropy 5, 271–312 (2003)CrossRefGoogle Scholar
  2. 2.
    P.G. Mezey, Mol. Phys. 104, 723–729 (2006)CrossRefGoogle Scholar
  3. 3.
    P.G. Mezey, J. Math. Chem. 45, 544–549 (2009)CrossRefGoogle Scholar
  4. 4.
    P.G. Mezey, K. Fukui, S. Arimoto, K. Taylor, Int. J. Quantum Chem. 66, 99–105 (1998)CrossRefGoogle Scholar
  5. 5.
    G.M. Crippen, Curr. Comput. Aided Drug Des. 4, 259–264 (2008)CrossRefGoogle Scholar
  6. 6.
    H. Zabrodsky, S. Peleg, D. Avnir, J. Am. Chem. Soc. 114, 7843–7851 (1992)CrossRefGoogle Scholar
  7. 7.
    M. Pinsky, C. Dryzun, D. Casanova, P. Alemany, D. Avnir, J. Comput. Chem. 29, 2712–2721 (2008)CrossRefGoogle Scholar
  8. 8.
    H. Zabrodsky, D. Avnir, J. Am. Chem. Soc. 117, 462–473 (1995)CrossRefGoogle Scholar
  9. 9.
    S. Alvarez, P. Alemany, D. Avnir, Chem. Soc. Rev. 34, 313–326 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Pinsky, D. Avnir, Inorg. Chem. 37, 5575–5582 (1998)CrossRefGoogle Scholar
  11. 11.
    S. Alvarez, Dalton Trans. 13, 2209–2233 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord. Chem. Rev. 249, 1693–1708 (2005)CrossRefGoogle Scholar
  13. 13.
    D. Yogev-Einot, D. Avnir, Tetrahedron Asymmetry 17, 2723–2725 (2006)CrossRefGoogle Scholar
  14. 14.
    C. Dryzun, Y. Mastai, A. Shvalb, D. Avnir, J. Mater. Chem. 19, 2062–2069 (2009)CrossRefGoogle Scholar
  15. 15.
    I. Tuvi-Arad, D. Avnir, J. Math. Chem. 47, 1274–1286 (2010)CrossRefGoogle Scholar
  16. 16.
    I. Tuvi-Arad, D. Avnir, J. Org. Chem. 76, 4973–4979 (2011)CrossRefGoogle Scholar
  17. 17.
    I. Tuvi-Arad, D. Avnir, Chem. Eur. J. 18, 10014–10020 (2012)CrossRefGoogle Scholar
  18. 18.
    I. Tuvi-Arad, T. Rozgonyi, A. Stirling, J. Phys. Chem. A 117, 12726–12733 (2013)CrossRefGoogle Scholar
  19. 19.
    I. Tuvi-Arad, A. Stirling, Isr. J. Chem. 56, 1067–1075 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Bonjack-Shterengartz, D. Avnir, Proteins Struct. Funct. Bioinf. 83, 722–734 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Keinan, D. Avnir, J. Am. Chem. Soc. 122, 4378–4384 (2000)CrossRefGoogle Scholar
  22. 22.
    M.H. Jamroz, J.E. Rode, S. Ostrowski, P.F.J. Lipinski, J.C. Dobrowolski, J. Chem. Inf. Model. 52, 1462–1479 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Milner, S. Raz, H. Hel-Or, D. Keren, E. Nevo, Pattern Recogn. 40, 2237–2250 (2007)CrossRefGoogle Scholar
  24. 24.
    I. Saragusti, I. Sharon, O. Katzenelson, D. Avnir, J. Archaeol. Sci. 25, 817–825 (1998)CrossRefGoogle Scholar
  25. 25.
    R. Iovita, I. Tuvi-Arad, M.H. Moncel, J. Despriee, P. Voinchet, J.J. Bahain, Plos One 12, e0177063 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Dryzun, A. Zait, D. Avnir, J. Comput. Chem. 32, 2526–2538 (2011)CrossRefGoogle Scholar
  27. 27.
    O. Katzenelson, J. Edelstein, D. Avnir, Tetrahedron Asymmetry 11, 2695–2704 (2000)CrossRefGoogle Scholar
  28. 28.
    Molecular Operating Environment (MOE), Chemical Computing Group Inc, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 (2016)Google Scholar
  29. 29.
    C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, Acta Cryst. B72, 171–179 (2016)Google Scholar
  30. 30.
    J.-J. Zhang, J. Glaser, S.A. Gamboa, A. Lachgar, J. Chem. Crystallogr. 39, 1–8 (2009)CrossRefGoogle Scholar
  31. 31.
    X.-L. Wang, D.-N. Liu, H.-Y. Lin, N. Han, G.-C. Liu, J. Inorg. Organomet. Polym Mater. 25, 671–679 (2015)CrossRefGoogle Scholar
  32. 32.
    Z. Yi, X. Yu, W. Xia, L. Zhao, C. Yang, Q. Chen, X. Wang, X. Xu, X. Zhang, CrystEngComm 12, 242–249 (2010)CrossRefGoogle Scholar
  33. 33.
    C. du Peloux, A. Dolbecq, P. Mialane, J. Marrot, F. Secheresse, Dalton Trans. 1259–1263 (2004). doi: 10.1039/B401250J
  34. 34.
    H.-Y. Ma, L.-Z. Wu, H.-J. Pang, X. Meng, J. Peng, J. Mol. Struct. 967, 15–19 (2010)CrossRefGoogle Scholar
  35. 35.
    M.P. Byrn, C.J. Curtis, Y. Hsiou, S.I. Khan, P.A. Sawin, S.K. Tendick, A. Terzis, C.E. Strouse, J. Am. Chem. Soc. 115, 9480–9497 (1993)CrossRefGoogle Scholar
  36. 36.
    V.E. de Oliveira, C.C. Corrêa, C.B. Pinheiro, R. Diniz, L.F.C. de Oliveira, J. Mol. Struct. 995, 125–129 (2011)CrossRefGoogle Scholar
  37. 37.
    P. Dastidar, I. Goldberg, Acta Crystallogr. Sect. C 52, 1976–1980 (1996)CrossRefGoogle Scholar
  38. 38.
    S. McGill, V.N. Nesterov, S.L. Gould, Acta Crystallogr. Sect. E 69, m471 (2013)CrossRefGoogle Scholar
  39. 39.
    L. Abbassi, Y.M. Chabre, N. Kottari, A.A. Arnold, S. Andre, J. Josserand, H.-J. Gabius, R. Roy, Polym. Chem. 6, 7666–7683 (2015)CrossRefGoogle Scholar
  40. 40.
    W. C. Marsh, J. Trotter, J. Chem. Soc. A, 161–173 (1971). doi: 10.1039/J19710000169
  41. 41.
    H.A. Alidağı, Ö.M. Gırgıç, Y. Zorlu, F. Hacıvelioğlu, S.Ü. Çelik, A. Bozkurt, A. Kılıç, S. Yeşilot, Polymer 54, 2250–2256 (2013)CrossRefGoogle Scholar
  42. 42.
    H. R. Allcock, S. Al-Shali, D. C. Ngo, K. B. Visscher, M. Parvez, J. Chem. Soc. Dalton Trans. 3549–3559 (1996). doi: 10.1039/DT9960003549
  43. 43.
    Y. Tümer, H. Bati, N. Çalişkan, Çd Yüksektepe, O. Büyükgüngör, Zeitschrift für anorganische und allgemeine Chemie 634, 597–599 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceThe Open University of IsraelRaananaIsrael
  2. 2.Department of Natural SciencesThe Open University of IsraelRaananaIsrael

Personalised recommendations