Skip to main content
Log in

The mass renormalization for the translational Brownian motion

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The damped harmonic oscillator is modeled as a local mode X with mass m and frequency \(\omega _{0}\) immersed in a phonon bath with spectral density function \(j_{0}(\omega \)). This function behaves as \(\omega ^{s}\, (s= 1,2,3,\ldots )\) when \(\omega \rightarrow 0\). The limit \(\omega _{0} = 0\) represents translational (free) Brownian motion. The earlier work (Hakim and Ambegaokar in Phys Rev A 32:423, 1985) concluded that the so defined limit transition is prohibited for spectral densities with \(s<2\). In the present study we demonstrate that a specially constructed preliminary excitation changing the original bath spectrum as \(j_{0}(\omega ) \rightarrow j(\omega )\) allows for treating the free damped motion of X with no restriction for the initial spectrum dimensionality. This procedure validates the finite mass renormalization (i.e. \(m\rightarrow M\) when \(\omega _{0}\rightarrow 0)\) for the conventional bath spectra with \(s=1,2\). We show that the new spectral density \(j(\omega )\) represents the momentum bilinear interaction between mode X and the environmental modes, whereas the conventional function \(j_{0}(\omega )\) is inherent to the case of bilinear coordinate interaction in terms of the same variables. The translational damping kernel is derived based on the new spectral density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In Ref. [5] the constant factor 1/m was implicitly included.

References

  1. U. Weiss, Quantum Dissipative Systems, 4th edn. (World Scientific, Singapore, 2012)

    Book  Google Scholar 

  2. R. Zwanzig, Nonequilibrium Swtatistical Mechanics (Oxford University Press, Oxford, 2001)

    Google Scholar 

  3. H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)

    Article  CAS  Google Scholar 

  4. V. Hakim, V. Ambegaokar, Phys. Rev. A 32, 423 (1985)

    Article  CAS  Google Scholar 

  5. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)

    Article  CAS  Google Scholar 

  6. H. Dekker, Phys. Rep. 80, 1 (1981)

    Article  Google Scholar 

  7. M.V. Basilevsky, G.V. Davidovich, A.I. Voronin, J. Chem. Phys. 120, 3716 (2004)

    Article  CAS  Google Scholar 

  8. M.V. Basilevsky, A.I. Voronin, J. Phys, Condens. Matter 14, 10389 (2002)

    Article  CAS  Google Scholar 

  9. R. Kubo, M. Toda, N. Hatshisume, Statistical Physics II, Nonequilibrium Statistical Mechanics (Springer, Berlin, 1985)

    Google Scholar 

  10. S. Adelman, Adv. Chem. Phys. 44, 143 (1980)

    Article  CAS  Google Scholar 

  11. E. Cortes, B.J. West, K. Lindenberg, J. Chem. Phys. 82, 2708 (1985)

    Article  CAS  Google Scholar 

  12. H. Goldstein, Classical Mechanics (Addison-Wesley, Amsterdam, 1980)

    Google Scholar 

  13. S. Adelman, R. Ravi, Adv. Chem. Phys. 115, 181 (2000)

    Google Scholar 

  14. M.R. Da Costa, A.O. Caldeira, S.M. Dutra, H. Westfahl, Phys. Rev. A 61, 022107 (2000)

    Article  Google Scholar 

  15. R. Zwanzig, J. Stat. Phys. 9, 215 (1973)

    Article  Google Scholar 

  16. A.O. Caldeira, A.J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983)

    Article  Google Scholar 

  17. P. Ullersma, Physica (Utrecht) 32, 27, 56, 74, 90 (1966)

    Article  Google Scholar 

  18. V.B. Magalinskij, Sov. Phys. JETP 9, 1381 (1959)

    Google Scholar 

  19. R.J. Rubin, J. Math. Phys. 1, 309 (1960)

    Article  Google Scholar 

  20. R.J. Rubin, J. Math. Phys. 2, 373 (1961)

    Article  Google Scholar 

  21. J.R. Senitsky, Phys. Rev. 119, 670 (1960)

    Article  Google Scholar 

  22. G.W. Ford, M. Kac, P. Mazur, J. Math. Phys. 6, 504 (1965)

    Article  Google Scholar 

  23. R.H. Stevens, J. Phys. C 16, 5765 (1983)

    Article  CAS  Google Scholar 

  24. L.D. Landau, E.M. Lifshits, Statistical Physics, Part I, 3rd edn. (Pergamon, 1980)

  25. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1980)

    Google Scholar 

  26. L.E. Reichl, A Modern Course in Statistical Physics, 2nd edn. (Wiley, New York, 1998)

    Google Scholar 

Download references

Acknowledgements

The authors are greatly indebted to A. V. Odinokov, V. A. Tikhomirov and S. V. Titov for the assistance in performing the illustrative calculations. This work was supported by the Russian Science Foundation, Contract No. 14-43-00052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Basilevsky.

Additional information

A. I. Voronin : Deceased. This author passed away during the preparation of the present work.

Appendix

Appendix

The full expression for the function \(f(\omega )\) (23) is

$$\begin{aligned} f(\omega )=\omega ^{2}\left\{ {\left( {px^{s-2}e^{-x}} \right) ^{2}+\left( {\frac{2}{\pi }pI_s (x)-1} \right) ^{2}} \right\} \end{aligned}$$

where

$$\begin{aligned} I_s (x)=\int \limits _0^\infty {\frac{{x}'^{(s-1)}e^{-{x}'}d{x}'}{x^{2}-{x}'^{2}}} \quad (s=1,2,3) \end{aligned}$$

In particular [11]:

$$\begin{aligned} I_1 (x)=\frac{1}{2x}\left[ {e^{-x}\bar{{E}}i(x)+e^{x}Ei(-x)} \right] \end{aligned}$$

whereas \(I_2 (x)=xI_1 (x)\) and \(I_3 (x)=x^{2}I_1 (x)-1\).

Expressions (33) for \(z_{s}(x)\) arise based on these prescriptions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basilevsky, M.V., Voronin, A.I. The mass renormalization for the translational Brownian motion. J Math Chem 55, 1236–1252 (2017). https://doi.org/10.1007/s10910-017-0741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-017-0741-0

Keywords

Navigation