Skip to main content
Log in

Novel phase-fitted symmetric splitting methods for chemical oscillators

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Splitting strategy is considered for the numerical solution of oscillatory chemical reaction systems. When applied to the harmonic oscillator, traditional splitting methods with constant coefficients are shown to be have some order of phase lag though they are zero-dissipative. Phase-fitted symmetric splitting methods of order two and order four are constructed. The result of the numerical experiment on the Lotka–Volterra system shows that the new phase-fitted symmetric splitting methods are more effective than their prototype splitting methods and can preserve the invariant of the system in long-term compared with the classical Runge–Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B.P. Belousov, A periodic reaction and its mechanism, in Oscillations and Travelling Waves in Chemical Systems, 1951, ed. by R.J. Field, M. Burger (Wiley, New York, 1985), pp. 605–613. (from his archives (in Russian))

    Google Scholar 

  2. B.P. Belousov, An oscillating reaction and its mechanism, in Sborn. Referat. Radiat. Med. (Collection of Abstracts on Radiation Medicine) (Medgiz, Moscow, 1959), p. 145

  3. S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008)

    Google Scholar 

  4. W.C. Bray, A periodic reaction in homogeneous solution and its relationship to catalysis. J. Am. Chem. Soc. 43, 1262–1267 (1921)

    Article  CAS  Google Scholar 

  5. W.C. Bray, H.A. Liebhafsky, Reactions involving hydrogen peroxide, iodine and iodateion I: introduction. J. Am. Chem. Soc. 53, 38–44 (1931)

    Article  CAS  Google Scholar 

  6. J. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd edn. (Wiley, New York, 2008)

    Book  Google Scholar 

  7. Z. Chen, J. Li, R. Zhang, X. You, Exponentially fitted two-derivative Runge–Kutta methods for simulation of oscillatory genetic regulatory systems. Comput. Math. Methods Med. 2015, Article ID 689137 (2015)

  8. I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford University Press, New York, 1998)

    Google Scholar 

  9. C.P. Fall, E.S. Marland, J.M. Wagner, J.J. Tyson (eds.), Computational Cell Biology (Springer, New York, 2002)

    Google Scholar 

  10. L.K. Forbes, C.A. Holmes, Limit-cycle behaviour in a model chemical reaction: the cubic autocatalator. J. Eng. Math. 24, 179–189 (1990)

    Article  Google Scholar 

  11. C. Gérard, A. Goldbeter, A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle. Interface Focus 1, 24–35 (2011)

    Article  Google Scholar 

  12. A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  13. A. Goldbeter, Oscillatory enzyme reactions and Michaelis–Menten kinetics. FEBS Lett. 587, 2778–2784 (2013)

    Article  CAS  Google Scholar 

  14. B.C. Goodwin, Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–439 (1965)

    Article  CAS  Google Scholar 

  15. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  16. E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems (Springer, Berlin, 1993)

    Google Scholar 

  17. R.H. Hering, Oscillations in Lotka–Volterra systems of chemical reactions. J. Math. Chem. 5, 197–202 (1990)

    Article  CAS  Google Scholar 

  18. H. Holden, K.H. Karlsen, K.A. Lie, N.H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions (European Mathematical Society, Zurich, 2010)

    Book  Google Scholar 

  19. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (Springer, New York, 2003)

    Book  Google Scholar 

  20. L. Gr Ixaru, G. Vanden Berghe, Exponential Fitting (Kluwer, Dordrecht, 2004)

    Book  Google Scholar 

  21. L. Gr Ixaru, G. Vanden Berghe, H. De Meyer, Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)

    Article  Google Scholar 

  22. P.S. Landa, Nonlinear Oscillations and Waves Dynamical Systems (Springer, New York, 1996)

    Book  Google Scholar 

  23. C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis (European Mathematical Society, Zurich, 2008)

    Book  Google Scholar 

  24. R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Numer. Anal. 16, 151–168 (1995)

    Google Scholar 

  25. R.I. McLachlan, R. Quispel, Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  Google Scholar 

  26. D. McMillen, N. Kopell, J. Hasty, J.J. Collins, Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. USA 99, 679–684 (2002)

    Article  CAS  Google Scholar 

  27. J. Murray, Mathematical Biology, 3rd edn. (Springer, New York, 2002)

    Google Scholar 

  28. H. Ramos, J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 23, 1378–1381 (2010)

    Article  Google Scholar 

  29. J. Szamosi, S. Kristyan, Experimental mathematics. I. Computational study on the limit cycle behavior of a two-dimensional chemical oscillator. J. Comput. Chem. 5, 186–189 (1984)

    Article  CAS  Google Scholar 

  30. H. Van de Vyver, Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184, 442–463 (2005)

    Article  Google Scholar 

  31. G. Vanden Berghe, L. Gr Ixaru, H. De Meyer, Frequency determination and step-length control for exponentially-fitted Runge–Kutta methods. J. Comput. Appl. Math. 132, 95–105 (2001)

    Article  Google Scholar 

  32. J. Vigo-Aguiar, H. Ramos, On the choice of the frequency in trigonometrically-fitted methods for periodic problems. J. Comput. Appl. Math. 277, 94–105 (2015)

    Article  Google Scholar 

  33. D. Wilkinson, Stochastic Modelling for Systems Biology, 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2011)

    Google Scholar 

  34. X. You, Limit-cycle-preserving simulation of gene regulatory oscillators. Discrete Dyn. Nat. Soc. 2012, Article ID 673296 (2012)

  35. X. You, X. Liu, I.H. Musa, Splitting strategy for simulating genetic regulatory networks. Comput. Math. Methods Med. 2014, Article ID 683235 (2014)

  36. A.M. Zhabotinskii, Periodic processes of the oxidation of malonic acid in solution (Study of the kinetics of Belousov’s reaction). Biofizika 9, 306–311 (1964)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms. Juan Li for her exploratory experiments on some biological oscillators with phase-fitted splitting methods. This research was partially supported by National Natural Science Foundation of China (NSFC) (Nos. 11171155, 11571302) and the Fundamental Research Fund for the Central Universities (No. KYZ201424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong You.

Appendix

Appendix

1.1 Proof of Theorem 2.1

Define \(\alpha _i,\beta _i, i=1,\ldots ,s\) recursively by

$$\begin{aligned} \begin{array}{l} \beta _1=a_1, \alpha _1=b_1-\beta _1,\\ \beta _i =a_i-\alpha _{i-1}, \alpha _i=b_i-\beta _i, i=2,\ldots ,s. \end{array} \end{aligned}$$
(31)

With \(a_{s+1}=\alpha _s\), the scheme (9) is equivalent to the following scheme

$$\begin{aligned} \Psi _h=\Phi _{\alpha _{s}h}\circ \Phi ^{*}_{\beta _{s}h}\circ \cdots \circ \Phi _{\alpha _{2}h}\circ \Phi ^{*}_{\beta _{2}h}\circ \Phi _{\alpha _{1}h}\circ \Phi ^{*}_{\beta _{1}h}, \end{aligned}$$

where \(\Phi _{\alpha _{i}h}=\varphi ^{[1]}_{\alpha _{i}h}\circ \varphi ^{[2]}_{{\alpha _{i}h}}\) and \(\Phi ^{*}_{\beta _{i}h}=\varphi ^{[2]}_{{\beta _{i}h}}\circ \varphi ^{[1]}_{{\beta _{i}h}}.\)

The first to fourth order conditions are given as follow (see Example 3.15 in Chapter III of Hairer et al. [15])

$$\begin{aligned} \begin{array}{ll} \mathrm{Order\ one\ requires}&{}\sum \limits _{i=1}^{s}(\alpha _i+\beta _i)=1;\\ \mathrm{Order\ two\ requires\ in\ addition}&{}\sum \limits _{i=1}^{s}\left( \alpha _i^2-\beta _i^2\right) =0;\\ \mathrm{Order\ three\ requires\ in\ addition} &{} \sum \limits _{i=1}^{s}\left( \alpha _i^3+\beta _i^3\right) =0,\\ &{} \sum \limits _{i=1}^{s}\left( \alpha _i^2-\beta _i^2\right) \left( \sum \limits _{l=1}^{i-1}\alpha _l+ \sum \limits _{l=1}^{i}\beta _l\right) =0;\\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{ll} \mathrm{Order\ four\ requires\ in\ addition} &{} \sum \limits _{i=1}^{s}\left( \alpha _i^4-\beta _i^4\right) =0,\\ &{} \sum \limits _{i=1}^{s}\left( \alpha _i^3+\beta _i^3\right) \left( \sum \limits _{l=1}^{i-1}\alpha _l+ \sum \limits _{l=1}^{i}\beta _l\right) =0,\\ &{} \sum \limits _{i=1}^{s}\left( \alpha _i^2-\beta _i^2\right) \left( \sum \limits _{l=1}^{i-1}\alpha _l+ \sum \limits _{l=1}^{i}\beta _l\right) ^2=0.\\ \end{array} \end{aligned}$$
(32)

From the relation (31), we have

$$\begin{aligned} \alpha _i+\beta _i=b_i, \end{aligned}$$

and

$$\begin{aligned}&\alpha _1=b_1-a_1,\\&\alpha _i-\alpha _{i-1}=b_i-a_i,\quad i\ge 2. \end{aligned}$$

which imply that

$$\begin{aligned} \alpha _i=\sum \limits _{l=1}^{i}(b_l-a_l):=d_i, \quad \beta _i=b_i-d_i\quad \mathrm{and}\quad \sum \limits _{l=1}^{i-1}\alpha _l+ \sum \limits _{l=1}^{i}\beta _l=\sum \limits _{l=1}^{i}a_l:=c_i. \end{aligned}$$
(33)

Substituting (33) into (32) gives the conditions (10) in Theorem 2.1. The proof is complete.

1.2 Proof of Theorem 3.1

Necessity. If the phase lag \(PL(\nu )=c_{r+1}\nu ^{r+1}+\mathcal {O}(\nu ^{r+2})\), that is

$$\begin{aligned} \nu -\arccos \frac{\mathrm{tr}(R(\nu ))}{2\sqrt{\det (R(\nu ))}}=c_{r+1}\nu ^{r+1}+\mathcal {O}(\nu ^{r+2}),\ c_{r+1}\ne 0, \quad \nu \rightarrow 0, \end{aligned}$$

then

$$\begin{aligned} \frac{\mathrm{tr}(R(\nu ))}{2\sqrt{\det (R(\nu ))}}=\cos \big (\nu -c_{r+1}\nu ^{r+1}+\mathcal {O}(\nu ^{r+2})\big ), \end{aligned}$$

and the pseudo-phase lag

$$\begin{aligned} \begin{array}{rl} {\textit{PPL}}(\nu )&{}=\cos (\nu )-\frac{\mathrm{tr}(R(\nu ))}{2\sqrt{\det (R(\nu ))}} \\ &{}=\cos (\nu )-\cos \big (\nu -c_{r+1}\nu ^{r+1}+\mathcal {O}(\nu ^{r+2})\big )\\ &{}=\cos (\nu )-\big [\cos (\nu )+\sin (\nu )\big (c_{r+1}\nu ^{p+1}+\mathcal {O}(\nu ^{r+2})\big )+\mathcal {O}(\nu ^{2r+2})\big ]\\ &{}=-\sin (\nu )\big (c_{r+1}\nu ^{r+1}+\mathcal {O}(\nu ^{r+2})\big )+\mathcal {O}(\nu ^{2r+2})\\ &{}=-\big (\nu +\mathcal {O}(\nu ^3)\big )\big (c_{r+1}\nu ^{r+1}+\mathcal {O}(\nu ^{r+2})\big )+\mathcal {O}(\nu ^{2r+2})\\ &{}=-c_{r+1}\nu ^{r+2}+\mathcal {O}(\nu ^{r+3}). \end{array} \end{aligned}$$

Sufficiency. Conversely assume that \({\textit{PPL}}(\nu )=-c_{r+1}\nu ^{r+2}+\mathcal {O}(\nu ^{r+3})\), that is

$$\begin{aligned} \cos (\nu )-\frac{\mathrm{tr}(R(\nu ))}{2\sqrt{\det (R(\nu ))}}=-c_{r+1}\nu ^{r+2}+\mathcal {O}(\nu ^{r+3}), \end{aligned}$$

then

$$\begin{aligned} \frac{\mathrm{tr}(R(\nu ))}{2\sqrt{\det (R(\nu ))}}=\cos (\nu )+c_{r+1}\nu ^{r+2}+\mathcal {O}(\nu ^{r+3}), \end{aligned}$$

as \(\nu \rightarrow 0\) (\(\nu =\omega h>0\)), and

$$\begin{aligned} \begin{array}{rl} PL(\nu )&{}= \nu -\arccos \left( \frac{\mathrm{tr}(R(\nu ))}{2\sqrt{\det (R(\nu ))}}\right) \\ &{}=\nu -\arccos \left( \cos (\nu )+c_{r+1}\nu ^{r+2}+\mathcal {O}(\nu ^{r+3})\right) \\ &{}=\nu -\arccos \big (\cos (\nu )\big )+\frac{1}{\sqrt{1-\cos (\nu )^2}}\big (c_{r+1}\nu ^{r+2}+\mathcal {O}(\nu ^{r+3})\big )+\mathcal {O}(\nu ^{r+2})\\ &{}=\frac{1}{\sin (\nu )}\big (c_{r+1}\nu ^{r+2}+\mathcal {O}(\nu ^{r+3})\big )+\mathcal {O}(\nu ^{r+2})\\ &{}=c_{r+1}\nu ^{r+1}+\mathcal {O}(\nu ^{r+2}), \end{array}\end{aligned}$$

The proof is complete.

1.3 Proof of Lemma 3.1

We only prove the lemma for the method SSP1h. The proof for the other methods is similar. The exact flows of the vector fields \(F^{[1]}\) and \(F^{[2]}\) in (19) are given respectively by

$$\begin{aligned} \varphi _h^{[1]}= \left( \begin{array}{cc} 1 &{}\quad \nu \\ 0 &{}\quad 1 \\ \end{array} \right) \quad {\text{ and }} \quad \varphi _h^{[2]}= \left( \begin{array}{cc} 1 &{}\quad 0 \\ -\nu &{}\quad 1 \\ \end{array} \right) ,\qquad \nu =h\omega . \end{aligned}$$

Applying the method SSP1 to the decomposed system (18)–(19) gives

$$\begin{aligned} \begin{array}{rl} \left( \begin{array}{c}q_{n+1}\\ p_{n+1}\end{array}\right) &{}=\Psi _h^\mathrm{SSP1h}(\nu )\left( \begin{array}{c}q_{n}\\ p_{n}\end{array}\right) \\ &{}= \varphi _{h/2}^{[1]}\circ \varphi _h^{[2]}\circ \varphi _{h/2}^{[1]}\left( \begin{array}{c}q_{n}\\ p_{n}\end{array}\right) \\ &{}=\left( \begin{array}{c} (1- \nu ^2/2)q_n+ ( \nu -\nu ^3/4 )p_n \\ -\nu q_n +(1- \nu ^2/2)p _n \end{array} \right) .\end{array} \end{aligned}$$

Then the stability matrices of SSP1h is

$$\begin{aligned} R^\mathrm{SSP1h}(\nu )= \left( \begin{array}{cc} 1- \nu ^2/2 &{}\quad \nu -\nu ^3/4 \\ -\nu &{}\quad 1- \nu ^2/2 \\ \end{array}\right) . \end{aligned}$$

Thus

$$\begin{aligned} {\textit{LTE}}_q^\mathrm{SSP1h}= & {} q_{n+1}-q(t_{n+1})\\= & {} \big ( (1- \nu ^2/2)q_n+ ( \nu -\nu ^3/4 )p_n\big )-\big (\cos (\nu )q_n+\sin (\nu )p_n\big )\\= & {} \big ( (1- \nu ^2/2)-\cos (\nu )\big )q_{n}+\big ((\nu -\nu ^3/4)-\sin (\nu )\big ) p_n\\= & {} -\frac{\omega ^3q_{n}}{2}h^3-\frac{\omega ^4q_{n}}{24}h^4+\mathcal {O}(h^5),\\ {\textit{LTE}}_p^\mathrm{SSP1h}= & {} p_{n+1}-p(t_{n+1})\\= & {} (-\nu q_{n}+(1-\nu ^2) p_n)-\big (-\sin (\nu )q_n+\cos (\nu )p_n\big )\\= & {} \big (\sin (\nu )-\nu ) q_{n}+\big (1-\nu ^2-\cos (\nu ) p_n)\\= & {} -\frac{\omega ^3q_{n}}{6}h^3-\frac{\omega ^4p_{n}}{24}h^4+\mathcal {O}(h^5). \end{aligned}$$

By Definition 3.1 and Taylor series expansion, we obtain

$$\begin{aligned} \begin{aligned} {\textit{PPL}}^\mathrm{SSP1h}(\nu )&=\cos (\nu )-\big (1-\frac{\nu ^2}{2}\big )=\frac{\nu ^4}{24}+\mathcal {O}(\nu ^{6}) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} D^\mathrm{SSP1h}(\nu )=0. \end{aligned}$$

Therefore the method SSP1h has phase lag of order two and it is zero-dissipative. The proof is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Jiang, W., Ehigie, J.O. et al. Novel phase-fitted symmetric splitting methods for chemical oscillators. J Math Chem 55, 238–258 (2017). https://doi.org/10.1007/s10910-016-0684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0684-x

Keywords

Mathematics Subject Classification

Navigation