Skip to main content
Log in

Exponentially fitted multi-derivative linear methods for the resonant state of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A new family of exponentially fitted P-stable one-step linear methods involving several derivatives for the numerical integration of the Schrödinger equation are obtained. Numerical results are reported to show the efficiency and robustness of the new methods specially adapted to the integration of the radial time-independent Schrödinger equation for large energies. Error analysis is carried out and the asymptotic expressions of the local errors for large energies explain the results of the numerical experiments on the resonance problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd edn. (Pergamon Press Ltd., Oxford, 1977)

    Google Scholar 

  2. J.C. Butcher, The numerical analysis of ordinary differential equations, Runge-Kutta and general linear methods (Wiley, Chichester, 1987)

    Google Scholar 

  3. E. Hairer, S.P. Nørsett, S.P. Wanner, Solving Ordinary Differential Equations I Nonstiff Problems (Springer, Berlin, 1993)

    Google Scholar 

  4. J.C. Butcher, Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math. Soc. 3(2), 185–201 (1963)

    Article  Google Scholar 

  5. J.C. Butcher, An algebraic theory of integration methods. Math. Comput. 26, 79–106 (1972)

    Article  Google Scholar 

  6. J.C. Butcher, On the attainable order of Runge-Kutta methods. Math. Comput. 19(91), 408–417 (1965)

    Article  Google Scholar 

  7. J.C. Butcher, On A-stable implicit Runge-Kutta methods. BIT 17(4), 375–378 (1977)

    Article  Google Scholar 

  8. E. Hairer, S.P. Wanner, On the Butcher group and general multi-value methods. Computing 13(1), 1–15 (1974)

    Article  Google Scholar 

  9. J.C. Butcher, J.R. Cash, Toward efficient Runge-Kutta methods for stiff systems. SIAM. J. Numer. Anal. 27(3), 753–761 (1990)

    Article  Google Scholar 

  10. K.H. Kastlunge, G. Wanner, Runge Kutta processes with multiple nodes. Computing 9, 9–24 (1972)

    Article  Google Scholar 

  11. E. Hairer, G. Wanner, Multistep-multistage-multiderivative methods for ordinary differential equations. Computing 11(3), 287–303 (1973)

    Article  Google Scholar 

  12. G. Avdelas, T.E. Simos, J. Vigo-Aguiar, An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation and related periodic initial-value problems. Comput. Phys. Commun. 131(1–2), 52–67 (2000)

    Article  CAS  Google Scholar 

  13. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  14. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponentially fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  15. Z. Anastassi, T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  16. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  17. Th Monovasilis, Z. Kalogiratou, Th Monovasilis, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  18. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  19. Ibraheem Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  20. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012(420387), 17 (2012)

    Google Scholar 

  21. I. Alolyan, T.E. Simos, A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(9), 2334–2379 (2014)

    Article  CAS  Google Scholar 

  22. Z.C. Wang, A new effective algorithm for the resonant state of a Schrödinger equation. Comput. Phys. Commun. 167(1), 1–6 (2005)

    Article  CAS  Google Scholar 

  23. J.D. Lambert, A.R. Mitchell, On the solution of \(y^{\prime }=f(x, y)\) by a class of high accuracy difference formulae of low order. Z. Angew. Math. Phys. 13(3), 223–232 (1962)

    Article  Google Scholar 

  24. Z. Wang, Y. Dai, A twelfth-order four-step formula for the numerical integration of the one-dimensional Schrödinger equation. Int. J. Mod. Phys. C 14(14), 1087–1105 (2003)

    Article  Google Scholar 

  25. Z. Wang, Y. Ge, Y. Dai, D. Zhao, A Mathematica program for the two-step twelfth-order method with multi-derivative for the numerical solution of a one-dimensional Schrödinger equation. Comput. Phys. Commun. 160(1), 23–45 (2004)

    Article  CAS  Google Scholar 

  26. Z. Wang, Q. Chen, A trigonometrically-fitted one-step method with multi-derivative for the numerical solution to the one-dimensional Schrödinger equation. Comput. Phys. Commun. 170(1), 49–64 (2005)

    Article  CAS  Google Scholar 

  27. J. Vigo-Aguiar, J.M. Ferrándiz, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)

    Article  Google Scholar 

  28. J. Wu, H. Tian, Functionally fitted bolck methods for ordinary differential equations. J. Comput. Appl. Math. 271(12), 356–368 (2014)

    Article  Google Scholar 

  29. N. Hoang, R.B. Sidje, N. Cong, On functionally-fitted Runge-Kutta methods. BIT 46(4), 861–874 (2006)

    Article  Google Scholar 

  30. M.M. Chawla, S.R. Sharma, Intervals of periodicity and absolute stability of explicit Nyström methods. BIT 21(4), 455–464 (1981)

    Article  Google Scholar 

  31. P.J. Van der Houwen, B.P. Sommeijer, Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer. Anal. 24(3), 595–617 (1987)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by National Scientific Foundation of China (NSFC) under Grant Nos. 11571302, 11171155, the foundation of Scientific Research Project of Shandong Universities under Grant No. J14LI04 and the Fundamental Research Fund for the Central Universities (No. KYZ201424). We are grateful to anonymous reviewers for their constructive comments and invaluable suggestions which have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong You or Yonglei Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., You, X. & Fang, Y. Exponentially fitted multi-derivative linear methods for the resonant state of the Schrödinger equation. J Math Chem 55, 223–237 (2017). https://doi.org/10.1007/s10910-016-0683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0683-y

Keywords

Navigation