Skip to main content
Log in

Transition-metal dichalcogenide heterostructure solar cells: a numerical study

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We evaluate the tunneling short-circuit current density \(J_{TU}\) in a pin solar cell in which the transition metal dichalcogenide heterostructure (\(\hbox {MoS}_2/\hbox {WS}_2\) superlattice) is embedded in the intrinsic i region. The effects of varying well and barrier widths, Fermi energy levels and number of quantum wells in the i region on \(J_{TU}\) are examined. A similar analysis is performed for the thermionic current \(J_{TH}\) that arises due to the escape and recapture of charge carriers between adjacent potential wells in the i-region. The interplay between \(J_{TU}\) and \(J_{TH}\) in the temperature range (300–330 K) is examined. The thermionic current is seen to exceed the tunneling current considerably at temperatures beyond 310 K, a desirable attribute in heterostructure solar cells. This work demonstrates the versatility of monolayer transition metal dichalcogenides when utilized as fabrication materials for van der Waals heterostructure solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.-Y. Li, C.-H. Chen, Y. Shi, L.-J. Li, Mater. Today (2015)

  2. S.-L. Li, K. Tsukagoshi, E. Orgiu, P. Samorì, Chem. Soc. Rev. 45, 118 (2016)

    Article  CAS  Google Scholar 

  3. V. Perebeinos, Nat. Nanotechnol. 10, 485 (2015)

    Article  CAS  Google Scholar 

  4. S. Ghatak, A.N. Pal, A. Ghosh, ACS Nano 5, 7707 (2011)

    Article  CAS  Google Scholar 

  5. X. Gan et al., Appl. Phys. Lett. 103, 181119 (2013)

    Article  Google Scholar 

  6. S. Wu et al., 2D Mater. 1, 011001 (2014)

    Article  Google Scholar 

  7. A.P. Luo et al., Photon. Res. 3, A69 (2015)

    Article  Google Scholar 

  8. D.-S. Tsai et al., ACS Nano 7, 3905 (2013)

    Article  CAS  Google Scholar 

  9. G. Eda, S.A. Maier, ACS Nano 7, 5660 (2013)

    Article  CAS  Google Scholar 

  10. K. Novoselov et al., Proc. Natl. Acad. Sci. USA 102, 10451 (2005)

    Article  CAS  Google Scholar 

  11. X. Fan et al., Nano Lett. 15, 5956 (2015)

    Article  CAS  Google Scholar 

  12. E. Varrla et al., Chem. Mater. 27, 1129 (2015)

    Article  CAS  Google Scholar 

  13. M. Chen et al., ACS Nano 9, 8773 (2015)

    Article  CAS  Google Scholar 

  14. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  15. K.F. Mak et al., Nat. Mater. 12, 207 (2013)

    Article  CAS  Google Scholar 

  16. Z. Zhu, Y. Cheng, U. Schwingenschlögl, Phys. Rev. B 84, 153402 (2011)

    Article  Google Scholar 

  17. H. Terrones, F. López-Urías, M. Terrones, Sci. Rep. 3, 1549 (2013)

    Article  Google Scholar 

  18. H.-P. Komsa, A.V. Krasheninnikov, Phys. Rev. B 88, 085318 (2013)

    Article  Google Scholar 

  19. R. Ionescu et al., Chem. Commun. 51, 11213 (2015)

    Article  CAS  Google Scholar 

  20. B. Amin, N. Singh, U. Schwingenschlögl, Phys. Rev. B 92, 075439 (2015)

    Article  Google Scholar 

  21. G.S. Duesberg, Nat. Mater. 13, 1075 (2014)

    Article  CAS  Google Scholar 

  22. D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671 (1976)

    Article  CAS  Google Scholar 

  23. F. Demichelis, A. Tagliaferro, E. Tresso, Solar Cells 14, 149 (1985)

    Article  CAS  Google Scholar 

  24. A. Thilagam, J. Singh, J. Non-cryst. Solids 288, 66 (2001)

    Article  CAS  Google Scholar 

  25. M. Bernardi, M. Palummo, J.C. Grossman, Nano Lett. 13, 3664 (2013)

    Article  CAS  Google Scholar 

  26. Y. Tsuboi et al., arXiv preprint arXiv:1503.05380 (2015)

  27. S. Wi et al., ACS Nano 8, 5270 (2014)

    Article  CAS  Google Scholar 

  28. S.L. Howell et al., Nano Lett. 15, 2278 (2015)

    Article  CAS  Google Scholar 

  29. N. Huo et al., Small 11, 5430 (2015)

    Article  CAS  Google Scholar 

  30. X. Hong et al., Nat. Nanotechnol. 9, 682–686 (2014)

    Article  CAS  Google Scholar 

  31. K. Kośmider, J. Fernández-Rossier, Phys. Rev. B 87, 075451 (2013)

    Article  Google Scholar 

  32. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012)

    Article  Google Scholar 

  33. T. Cheiwchanchamnangij, W.R. Lambrecht, Phys. Rev. B 85, 205302 (2012)

    Article  Google Scholar 

  34. H.-P. Komsa, A.V. Krasheninnikov, Phys. Rev. B 86, 241201 (2012)

    Article  Google Scholar 

  35. A. Thilagam, J. Appl. Phys. 116, 053523 (2014)

    Article  Google Scholar 

  36. H.M. Hill et al., Nano Lett. 15, 2992 (2015)

    Article  CAS  Google Scholar 

  37. K.W. Barnham, G. Duggan, J. Appl. Phys. 67, 3490 (1990)

    Article  CAS  Google Scholar 

  38. K. Barnham et al., Appl. Phys. Lett. 59, 135 (1991)

    Article  Google Scholar 

  39. E. Aperathitis et al., Sol. Energy Mater. Solar Cells 70, 49 (2001)

    Article  CAS  Google Scholar 

  40. A. Thilagam, J. Singh, P. Stulik, Sol. Energy Mater. Solar Cells 50, 243 (1998)

    Article  CAS  Google Scholar 

  41. J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Appl. Phys. Lett. 102, 012111 (2013)

    Article  Google Scholar 

  42. M.R. Laskar et al., Appl. Phys. Lett. 104, 092104 (2014)

    Article  Google Scholar 

  43. B.W. Baugher, H.O. Churchill, Y. Yang, P. Jarillo-Herrero, Nano Lett. 13, 4212 (2013)

    Article  CAS  Google Scholar 

  44. L. Liu, S.B. Kumar, Y. Ouyang, J. Guo, IEEE Trans. Electron. Devices 58, 3042 (2011)

    Article  CAS  Google Scholar 

  45. K. Dolui, I. Rungger, S. Sanvito, Phys. Rev. B 87, 165402 (2013)

    Article  Google Scholar 

  46. L. Yu, A. Ruzsinszky, J.P. Perdew, Nano Lett. 16, 2444–2449 (2016)

    Article  CAS  Google Scholar 

  47. R. Wang et al., Phys. Rev. B 86, 045406 (2012)

    Article  Google Scholar 

  48. A. Beal, H. Hughes, J. Phys. C Solid State Phys. 12, 881 (1979)

    Article  CAS  Google Scholar 

  49. M.-L. Tsai et al., ACS Nano 8, 8317 (2014)

    Article  CAS  Google Scholar 

  50. Z. Jin, X. Li, J.T. Mullen, K.W. Kim, Phys. Rev. B 90, 045422 (2014)

    Article  Google Scholar 

  51. C. Wu, E. Yang, Solid State Electron. 22, 241 (1979)

    Article  CAS  Google Scholar 

  52. A. Anwar, B. Nabet, J. Culp, F. Castro, J. Appl. Phys. 85, 2663 (1999)

    Article  CAS  Google Scholar 

  53. A. Allain, J. Kang, K. Banerjee, A. Kis, Nat. Mater. 14, 1195 (2015)

    Article  CAS  Google Scholar 

  54. H. Shichijo, K. Hess, B. Streetman, Solid State Electron. 23, 817 (1980)

    Article  CAS  Google Scholar 

  55. S. Mottet, J. Viallet, Thermionic emission in heterojunctions. in Proceedings 3rd International Conference on Simulation of Semiconductor Devices and Processes, pp. 97–108, 1988

  56. A. Grinberg, Phys. Rev. B 33, 7256 (1986)

    Article  CAS  Google Scholar 

  57. M. Grupen, K. Hess, G. H. Song, Simulation of transport over heterojunctions. in Proceedings of 4th International Conference on Simulation of Semiconductor Devices and Process Vol. 4, pp. 303–311, 1991

  58. C. Crowell, Solid State Electron. 8, 395 (1965)

    Article  Google Scholar 

  59. S. Hójfeldt, J. Mórk, IEEE J. Select. Topics Quant. Electron. 8, 1265 (2002)

    Article  Google Scholar 

  60. A. Modinos, Secondary electron emission spectroscopy. in Field, Thermionic, and Secondary Electron Emission Spectroscopy, pp. 327–345, Springer, 1984

  61. P. Landsberg, H. Nussbaumer, G. Willeke, J. Appl. Phys. 74, 1451 (1993)

    Article  CAS  Google Scholar 

  62. A. Nozik, Phys. E Low Dimens. Syst. Nanostruct. 14, 115 (2002)

    Article  CAS  Google Scholar 

  63. M. Wolf, R. Brendel, J. Werner, H. Queisser, J. Appl. Phys. 83, 4213 (1998)

    Article  CAS  Google Scholar 

  64. A. Thilagam, J. Appl. Phys. 119, 164306 (2016)

    Article  Google Scholar 

  65. H. Shi et al., ACS Nano 7, 1072 (2013)

    Article  CAS  Google Scholar 

  66. H. Wang et al., Phys. Rev. B 91, 165411 (2015)

    Article  Google Scholar 

  67. D. Sun et al., Nano Lett. 14, 5625 (2014)

    Article  CAS  Google Scholar 

  68. S. Konabe, S. Okada, Phys. Rev. B 90, 155304 (2014)

    Article  Google Scholar 

  69. A. Thilagam, Phys. Rev. B 55, 7804 (1997)

    Article  CAS  Google Scholar 

  70. H.S. Lee, M.S. Kim, H. Kim, Y.H. Lee, Phys. Rev. B 93, 140409 (2016)

    Article  Google Scholar 

  71. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)

    Article  Google Scholar 

  72. A. Thilagam, Phys. B Condens. Matter 464, 44 (2015)

    Article  CAS  Google Scholar 

  73. A. Matos-Abiague, J. Phys. Condens. Matter 14, 4543 (2002)

    Article  CAS  Google Scholar 

  74. A. Thilagam, A. Matos-Abiague, J. Phys. Condens. Matter 16, 3981 (2004)

    Article  CAS  Google Scholar 

  75. Y. Gong et al., Nat. Mater. 13, 1135 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thilagam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thilagam, A. Transition-metal dichalcogenide heterostructure solar cells: a numerical study. J Math Chem 55, 50–64 (2017). https://doi.org/10.1007/s10910-016-0669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0669-9

Keywords

Navigation