Skip to main content
Log in

Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoOx/n-Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (102–106 Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for \(V < 0.55 V\)), trap-space charge limited current due to an exponential distribution of traps (for \(0.55\le V< 0.95 V\)) and space charge limited current controlled by a single trap state (for \(0.95 \le V\le 2 V\)). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105(23), 232109 (2014).

  2. F. Wang, S. Zhao, B. Liu, Y. Li, Q. Ren, R. Du, N. Wang, C. Wei, X. Chen, G. Wang, B. Yan, Y. Zhao, X. Zhang, Silicon solar cells with bifacial metal oxides carrier selective layers. Nano Energy 39, 437–443 (2017)

    Article  Google Scholar 

  3. T. Sun, R. Wang, R. Liu, C. Wu, Y.Zhong, Y. Liu, Y. Wang, Y. Han, Z. Xia, Y. Zou, T. Song, N. Koch, S. Duhm, B. Sun, Investigation of MoOx/n-Si strong inversion layer interfaces via dopant‐free heterocontact. Physica Status Solidi (RRL)–Rapid Res. Lett. 11(7), 1700107 (2017).

  4. S. Bhatia, I.M. Khorakiwala, P.R. Nair, A. Antony, Influence of post deposition fabrication steps and quantitative estimation of band diagram of Si/MoOX heterojunction for carrier selective solar cells. Solar Energy 194, 141–147 (2019)

    Article  ADS  Google Scholar 

  5. L.G. Gerling, S. Mahato, A. Morales-Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers, Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells. Solar Energy Mater. Solar Cells 145, 109–115 (2016)

    Article  Google Scholar 

  6. C. Battaglia, S. M. De Nicolas, S. De Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104(11), 113902 (2014).

  7. B. Corsin, C. Battaglia, Y. Xingtian, Z. Maxwell, Ian D. Sharp, T. Chen, S. McDonnell, Carlo Carraro Azcatl, A., Biwu Ma, Maboudian R., Wallace Robert M., Javey A, Hole Selective MoOx Contact for Silicon Solar Cells. Nano Lett 14, 967–971 (2014)

  8. J. Cho, N. Nawal, A. Hadipour, M. R. Payo, A. van der Heide, H. S. Radhakrishnan, M. Debucquoy, I. Gordon, J. Szlufcik., J. Poortmans, Interface analysis and intrinsic thermal stability of MoOx based hole-selective contacts for silicon heterojunction solar cells. Solar Energy Mater. Solar Cells, 201, 110074 (2019).

  9. D. Sacchetto, Q. Jeangros, G. Christmann, L. Barraud, A. Descoeudres, J. Geissbühler, M. Despeisse, A. Hessler-Wyser, S. Nicolay, C. Ballif, ITO/MoOx/a-Si: H (i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration. IEEE J. Photovoltaics 7(6), 1584–1590 (2017)

    Article  Google Scholar 

  10. J. Geissbühler, J. Werner, S. Martin de Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107(8), 081601 (2015).

  11. T. Zhang, C. Y. Lee, Y. Wan, S., Lim, B. Hoex, Investigation of the thermal stability of MoOx as hole-selective contacts for Si solar cells. J. Appl. Phys. 124(7), 073106 (2018).

  12. R. García-Hernansanz, E. García-Hemme, D. Montero, J. Olea, A. Del Prado, I. Mártil, C. Voz, L.G. Gerling, J. Puigdollers, R. Alcubilla, Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Solar Energy Mater. Solar Cells 185, 61–65 (2018)

    Article  Google Scholar 

  13. J. Yu, Y. Fu, L. Zhu, Z. Yang, X. Yang, L. Ding, Y. Zeng, B. Yan, J. Tang, P. Gao, J. Ye, Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide. Solar Energy 159, 704–709 (2018)

    Article  ADS  Google Scholar 

  14. M. Gülnahar, H. Nasser, A. Salimi, R. Turan, On the electrical and charge conduction properties of thermally evaporated MoO x on n-and p-type crystalline silicon. J. Mater. Sci. Mater. Electronics 32(1), 1092–1104 (2021)

    Article  Google Scholar 

  15. V. Madurai, M. Natarajan, A. Santhanam, V. Asokan, D. Velauthapillai, Size controlled synthesis of TiO 2 nanoparticles by modi fi ed solvothermal method towards e ff ective photo catalytic and photovoltaic applications. Mater. Res. Bull. 97, 351–360 (2018).

  16. F. Li, Y. Zhou, Y. Yang, G. Dong, Y. Zhou, F. Liu, D. Yu, Silicon Heterojunction Solar Cells with MoOx Hole-Selective Layer by Hot Wire Oxidation-Sublimation Deposition. Solar RRL 4(3), 1900514 (2020)

    Article  Google Scholar 

  17. J. Bullock, D. Yan, A. Cuevas, Y. Wan, C. Samundsett, N-and p-typesilicon solar cells with molybdenum oxide hole contacts. Energy Procedia 77, 446–450 (2015)

    Article  Google Scholar 

  18. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, U. Toshihiko, A. Daisuke, K. Masanori, U. Hisashi, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2(5), 1–8 (2017)

    Article  Google Scholar 

  19. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B, 86(16), 165202 (2012).

  20. A. Cuevas, P.A. Basore, G. Giroult-Matlakowski, C. Dubois, Surface recombination velocity of highly doped n-type silicon. J. Appl. Phys. 80(6), 3370–3375 (1996)

    Article  ADS  Google Scholar 

  21. Z. C. Holman, a. Descoeudres, L. Barraud, FZ Fernandez, JP Seif, S. De Wolf, and C. Ballif. IEEE J. Photovoltaics, 2(7) (2012).

  22. E. Centurioni, D. Iencinella, Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance. IEEE Electron Device Lett. 24(3), 177–179 (2003)

    Article  ADS  Google Scholar 

  23. K.U. Ritzau, M. Bivour, S. Schröer, H. Steinkemper, P. Reinecke, F. Wagner, M. Hermle, TCO work function related transport losses at the a-Si: H/TCO-contact in SHJ solar cells. Solar Energy Mater. Solar Cells 131, 9–13 (2014)

    Article  Google Scholar 

  24. K. A.. Nagamatsu, S., Avasthi, J., Jhaveri, J. C. Sturm, IEEE J. Photovoltaics 4, 260 (2014).

  25. D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, J. Schmidt, Organic-silicon solar cells exceeding 20% efficiency. Energy Procedia 77, 331–339 (2015)

    Article  Google Scholar 

  26. G. Sarasqueta, F. So, SnPc: C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer. Solar Energy Mater. Solar Cells 93(8), 1452–1456 (2009)

    Article  Google Scholar 

  27. G. Li, C. W. Chu, V. Shrotriya, J., Huang, Y. Yang, Efficient inverted polymer solar cells. Applied Physics Lett., 88(25), 253503 (2006).

  28. S. Han, W.S. Shin, M. Seo, D. Gupta, S.J. Moon, S. Yoo, Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes. Organic Electronics 10(5), 791–797 (2009)

    Article  Google Scholar 

  29. S. Mahato, D. Biswas, L. G. Gerling, C. Voz, J. Puigdollers, Analysis of temperature dependent current-voltage and capacitance-voltage characteristics of an Au/V2O5/n-Si Schottky diode. AIP Adv. 7(8), 085313 (2017).

  30. M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Solar Energy Mater. Solar Cells 142, 34–41 (2015)

    Article  Google Scholar 

  31. S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, X. Chen, L. Lu, N. Min, M. Yin, D. Li, Interfacial behavior and stability analysis of p-type crystalline silicon solar cells based on hole-selective MoOX/metal contacts. Solar RRL 3, 1900274 (2019)

    Article  Google Scholar 

  32. Y. Jiang, S. Cao, L. Lu, G. Du, Y. Lin, J. Wang, L. Yang, W. Zhu, D. Li, Nanoscale Res Lett. 16, 87 (2021)

    Article  ADS  Google Scholar 

  33. J. Dréon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, M. Boccard, 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70, 104495 (2020).

  34. Z.F. Wei, B. Smith, F. De Rossi, J.R. Searle, D.A. Worsley, T.M. Watson, Efficient and semi-transparent perovskite solar cells using a room-temperature processed MoOx/ITO/Ag/ITO electrode. J. Mater. Chem. C 7, 10981–10987 (2019)

    Article  Google Scholar 

  35. D. Scirè, P. Procel, A. Gulino, O. Isabella, M. Zeman, I. Crupi, Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications. Nano Res. 13(12), 3416–3424 (2020)

    Article  ADS  Google Scholar 

  36. K. Silambarasan, J. Archana, S. Athithya, S. Harish, R. Sankar, M. Ganesh Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, K. Hara, Y. Hayakawa, Hierarchical NiO@NiS@graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell. Appl. Surf. Sci. 501, 144010 (2020).

  37. S. Gnanasekar, P. Kollu, S.K. Jeong, A.N. Grace, Pt-free, low-cost and efficient counter electrode with carbon wrapped VO2(M) nanofiber for dye-sensitized solar cells. Sci. Rep. 9, 1–12 (2019)

    Article  Google Scholar 

  38. S. Maitra, S. Pal, S. Datta, T. Maitra, B. Dutta, S. Roy, Nickel doped molybdenum oxide thin film counter electrodes as a low cost replacement for platinum in dye sensitized solar cells. Mater. Today: Proc. 39, 1856–1861 (2021)

    Google Scholar 

  39. J.H. Kim, D. S. Utomo, D Lee, J.W. Choi, M. Song, Catalytic flower-shaped α-MoO3 lamellar structure for solid-state fiber-dye-sensitized solar cells. J. Power Sources 512, 230496 (2021)

  40. M.M. Makhlouf, S. Abdulkarim, M. S. S. Adam, Q. Qiao, Unraveling urea pre-treatment correlated to activate Er2(WO4)3 as an efficient and stable counter electrode for dye-sensitized solar cells, Electrochimica Acta, 333, 135540 (2020)

  41. K. Gomathi, S. Padmanathan, A.M. Ali, A.T. Rajamanickam, Construction of Ni doped MoO3 nanostructures and their application as counter electrode in dye-sensitized solar cells. 135, 10907 (2022)

  42. X. Zhao, W. Jia, X. Wu, Y. Lv, J. Qiu, J. Guo et al., Ultrafine MoO3 anchored in coal-based carbon nanofiber as anode for advanced lithium-ion batteries. Carbon 156, 445–52 (2020)

    Article  Google Scholar 

  43. D. Han, S. Hwang, S.-M., Bak, K. -W. Nam, Controlling MoO 2 and MoO 3 phases in MoO x /CNTs nanocomposites and their application to anode materials for lithium-ion batteries and capacitors. Electrochim. Acta 388, 138635 (2021)

  44. K. Zhou, D. Shen, X. Li, Y. Chen, L., Hou, Y. Zhang, J. Sha, Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta 209,120507 (2020)

  45. P. Yadav, K. Pandey, V. Bhatt, M. Kumar, J. Kim, Critical aspects of impedance spectroscopy in silicon solar cell characterization: A review. Renew. Sustain. Energy Rev. 76, 1562–1578 (2017)

    Article  Google Scholar 

  46. B. Arredondo, B. Romero, G. Del Pozo, M. Sessler, C. Veit, U. Würfel, Impedance spectroscopy analysis of small molecule solution processed organic solar cell. Solar Energy Mater. Solar Cells 128, 351–356 (2014)

    Article  Google Scholar 

  47. M.M. Shehata, M.O. Abdel-Hamed, K. Abdelhady, Structural and dielectric properties of Au/perylene-66/p-Si/Al hybrid heterojunction diode. Vacuum 151, 96–107 (2018)

    Article  ADS  Google Scholar 

  48. M.M. Shehata, T.G. Abdel-Malik, K. Abdelhady, AC impedance spectroscopy on Al/p-Si/ZnTPyP/Au heterojunction for hybrid solar cell applications. J. Alloys Compounds 736, 225–235 (2018)

    Article  Google Scholar 

  49. M.M. Makhlouf, M.M. Shehata, Exploring illumination effect on the impedance spectroscopy and dielectric dispersion of 5, 10, 15, 20-tetrakis (4-methoxyphenyl)-21 H, 23 H-porphine cobalt (II)/silicon heterojunction photovoltaic. J. Mater. Sci. Mater. Electron. 31(16), 13970–13978 (2020)

    Article  Google Scholar 

  50. M.M. Shehata, K. Abdelhady, Temperature and frequency dependence of dielectric relaxation and AC electrical conductivity in p-Si/CuPc hybrid photodiode. Appl. Phys. A 124(9), 1–13 (2018)

    Article  Google Scholar 

  51. S. Sze, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981)

    Google Scholar 

  52. J. P. Kleider, A. S. Gudovskikh, P. Roca i Cabarrocas, Determination of the conduction band offset between hydrogenated amorphous silicon and crystalline silicon from surface inversion layer conductance measurements. Appl. Phys. Lett. 92(16), 162101 (2008).

  53. A.M. Nawar, M. Abd-Elsalam, A.M. El-Mahalawy, M.M. El-Nahass, Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction. Appl. Phys. A 126(2), 1–18 (2020)

    Article  Google Scholar 

  54. M. Soylu, A.A. Al-Ghamdi, F. Yakuphanoglu, Influence of illumination intensity and temperature on the electrical characteristics of an Al/p-GaAs/In structure prepared by thermal evaporation. Microelectronic Eng. 99, 50–57 (2012)

    Article  Google Scholar 

  55. E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts (Clarendon Press, 1988)

    Google Scholar 

  56. A. Bengi, U.M.U.T. Aydemir, Ş Altındal, Y.U.N.U.S. Özen, S. Özçelik, A comparative study on the electrical characteristics of Au/n-Si structures with anatase and rutile phase TiO2 interfacial insulator layer. J. Alloys Compounds 505(2), 628–633 (2010)

    Article  Google Scholar 

  57. I.S. Yahia, M. Fadel, G.B. Sakr, F. Yakuphanoglu, S.S. Shenouda, W.A. Farooq, Analysis of current–voltage characteristics of Al/p-ZnGa2Se4/n-Si nanocrystalline heterojunction diode. J. Alloys Compounds 509(12), 4414–4419 (2011)

    Article  Google Scholar 

  58. A.D.E.M. Tataroğlu, Ş Altındal, The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I-V characteristics. J. Alloys Compounds 484(1–2), 405–409 (2009)

    Article  Google Scholar 

  59. İ Dökme, Ş Altindal, M.M. Bülbül, The barrier height inhomogeneity in Al/p-Si Schottky barrier diodes with native insulator layer. Appl. Surface Sci. 252(22), 7749–7754 (2006)

    Article  ADS  Google Scholar 

  60. D. Meissner, D. Wohrle, Organic solar cells. Adv. Mater. 3, 129–138 (1991)

    Article  Google Scholar 

  61. M.A. Lampert, Volume-controlled current injection in insulators. Reports Progress Phys. 27(1), 329 (1964)

    Article  ADS  MATH  Google Scholar 

  62. T.A. Malik, R.M. Abdel-Latif, Ohmic and space-charge limited conduction in cobalt phthalocyanine thin films. Thin Solid Films 305(1–2), 336–340 (1997)

    Article  Google Scholar 

  63. S.K. Deb, J.A. Chopoorian, Optical properties and color-center formation in thin films of molybdenum trioxide. J. Appl. Phys. 37(13), 4818–4825 (1966)

    Article  ADS  Google Scholar 

  64. S. Karatas, C. Temirici, M. Ҫakar, A. Türüt, Temperature dependence of the current–voltage characteristics of the Al/Rhodamine-101/p-Si(1 0 0) contacts. Appl. Surf. Sci. 252, 2209–16 (2006)

    Article  ADS  Google Scholar 

  65. H.A. Afify, M.M. El-Nahass, A.S. Gadallah, M.A. Khedr, Carrier transport mechanisms and photodetector characteristics of Ag/TiOPc/p-Si/Al hybrid heterojunction. Mater. Sci. Semiconductor Process. 39, 324–331 (2015)

    Article  Google Scholar 

  66. A. Ahmad, R. A. Collins, Ohmic and Space‐Charge‐Limited Conduction in Lead Phthalocyanine Thin Films. Physica Status Solidi (a), 123(1), 201-211 (1991).

  67. I.S. Yahia, G.B. Sakr, T. Wojtowicz, G. Karczewski, Semicond. Sci. Technol. 25, 095001–8 (2010)

    Article  ADS  Google Scholar 

  68. D. Ma, I.A. Hümmelgen, B. Hu, F.E. Karasz, X. Jing, L. Wang, F. Wang, Determination of electron mobility in a blue-emitting alternating block copolymer by space-charge-limited current measurements. Solid State Commun. 112(5), 251–254 (1999)

    Article  ADS  Google Scholar 

  69. H.M. Zeyada, M.M. El-Nahass, E.M. El-Menyawy, Fabrication and transport mechanisms of 2-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile/p-silicon hybrid solar cell. Sol. Energy Mater. Sol. Cells 92, 1586–1592 (2008)

    Article  Google Scholar 

  70. S.R. Forrest, Organic–inorganic semiconductor devices and 3, 4, 9, 10 perylenetetracarboxylic dianhydride: an early history of organic electronics. J. Phys. Condensed Matter 15(38), S2599 (2003)

    Article  ADS  Google Scholar 

  71. C.A. Mead, Electron transport mechanisms in thin insulating films. Phys. Rev. 128(5), 2088 (1962)

    Article  ADS  Google Scholar 

  72. H.M. Zeyada, A.A. Habashi, M.M. Makhlouf, A.S. Behairy, M.A. Nasher, Fabrication, electrical transport mechanisms and photovoltaic properties of methyl violet 2B/n-Si hybrid organic/inorganic solar cell. Microelectronic Eng. 163, 134–139 (2016)

    Article  Google Scholar 

  73. R.D. Gould, C.J. Bowler, DC electrical properties of evaporated thin films of CdTe. Thin Solid Films 164, 281–287 (1988)

    Article  ADS  Google Scholar 

  74. A. Ashery, A.A.M. Farag, R. Mahani, Structural, electrical and magnetic characterizations of Ni/Cu/p-Si Schottky diodes prepared by liquid phase epitaxy. Microelectronic Eng. 87(11), 2218–2224 (2010)

    Article  Google Scholar 

  75. M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, M.M. Makhlouf, Current transport mechanisms and photovoltaic properties of tetraphenylporphyrin/n-type silicon heterojunction solar cell. Thin Solid Films 492(1–2), 290–297 (2005)

    Article  ADS  Google Scholar 

  76. M. Rusop, X.M. Tian, S.M. Mominuzzaman, T. Soga, T. Jimbo, M. Umeno, Photoelectrical properties of pulsed laser deposited boron doped p-carbon/n-silicon and phosphorus doped n-carbon/p-silicon heterojunction solar cells. Solar Energy 78(3), 406–415 (2005)

    Article  ADS  Google Scholar 

  77. T.S. Chen, Y.C. Hsueh, S.E. Chiou, S.T. Shiue, The effect of the native silicon dioxide interfacial layer on photovoltaic characteristics of gold/p-type amorphous boron carbon thin film alloy/silicon dioxide/n-type silicon/aluminum solar cells. Solar Energy Mater. Solar Cells 137, 185–192 (2015)

    Article  Google Scholar 

  78. S. Masudy-Panah, G. K. Dalapati, K. Radhakrishnan, A. Kumar, H. R. Tan, Reduction of Cu-rich interfacial layer and improvement of bulk CuO property through two-step sputtering for p-CuO/n-Si heterojunction solar cell. J. Appl. Phys. 116(7), 074501 (2014).

  79. Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S.T. Lee, B. Sun, High efficiency hybrid PEDOT: PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy Environ. Sci. 8(1), 297–302 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

Taif University Researchers Supporting Project number (TURSP-2020/165), Taif University, Taif, Saudi Arabia

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Makhlouf or M. M. Shehata.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors have the same contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhlouf, M.M., Khallaf, H. & Shehata, M.M. Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application. Appl. Phys. A 128, 98 (2022). https://doi.org/10.1007/s00339-021-05215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05215-z

Keywords

Navigation