Skip to main content
Log in

A linear programming approach to dynamical equivalence, linear conjugacy, and the Deficiency One Theorem

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The well-known Deficiency One Theorem gives structural conditions on a chemical reaction network under which, for any set of parameter values, the steady states of the corresponding mass action system may be easily characterized. It is also known, however, that mass action systems are not uniquely associated with reaction networks and that some representations may satisfy the Deficiency One Theorem while others may not. In this paper we present a mixed-integer linear programming framework capable of determining whether a given mass action system has a dynamically equivalent or linearly conjugate representation which has an underlying network satisfying the Deficiency One Theorem. This extends recent computational work determining linearly conjugate systems which are weakly reversible and have a deficiency of zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Achterberg, SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009), http://mpc.zib.de/index.php/MPC/article/view/4

  2. B. Ács, G. Szederkényi, Z.A. Tuza, Z. Tuza, Computing linearly conjugate weakly reversible kinetic structures using optimization and graph theory. MATCH Commun. Math. Comput. Chem. 74, 489–512 (2015)

    Google Scholar 

  3. C.P.P. Arceo, E.C. Jose, A. Marin-Sanguino, E.R. Mendoza, Chemical reaction network approaches to biochemical systems theory. Math. Biosci. 269, 135–152 (2015)

    Article  CAS  Google Scholar 

  4. B. Boros, Notes on the deficiency-one theorem: multiple linkage classes. Math. Biosci. 235(1), 110–122 (2012)

    Article  Google Scholar 

  5. B. Boros, On the Positive Steady States of Deficiency-One Mass Action Systems. Ph.D. Thesis, Eotvos Loránd University, Budapest (2013)

  6. G. Craciun, C. Pantea, Identifiability of chemical reaction networks. J. Math. Chem. 44(1), 244–259 (2008)

    Article  CAS  Google Scholar 

  7. M. Feinberg, Lectures on chemical reaction networks. Unpublished written versions of lectures given at the Mathematics Research Center, University of Wisconsin (1979), https://crnt.osu.edu/LecturesOnReactionNetworks

  8. M. Feinberg, Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187–194 (1972)

    Article  Google Scholar 

  9. M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors: I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987)

    Article  CAS  Google Scholar 

  10. M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors: II. Multiple steady states for networks of deficiency one. Chem. Eng. Sci. 43(1), 1–25 (1988)

    Article  CAS  Google Scholar 

  11. M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132, 311–370 (1995)

    Article  Google Scholar 

  12. M. Feinberg, F. Horn, Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces. Arch. Ration. Mech. Anal. 66, 83–97 (1977)

    Article  Google Scholar 

  13. K. Gatermann, B. Huber, A family of sparse polynomial systems arising in chemical reaction systems. J. Symb. Comput. 33(3), 275–305 (2002)

    Article  Google Scholar 

  14. J. Gunawardena, Chemical reaction network theory for in-silico biologists. Unpublished lecture notes (2003), http://vcp.med.harvard.edu/papers/crnt.pdf

  15. V. Hárs, J. Tóth, On the inverse problem of reaction kinetics. Coll. Math. Soc. J. Bolyai 30, 363–379 (1981)

    Google Scholar 

  16. A. Hill, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40(4), 4–7 (2010)

  17. F. Horn, Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49, 172–186 (1972)

    Article  Google Scholar 

  18. F. Horn, R. Jackson, General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)

    Article  Google Scholar 

  19. H. Ji, Uniqueness of Equilibria for Complex Chemical Reaction Networks. Ph.D. thesis, The Ohio State University (2011)

  20. M.D. Johnston, A computational approach to steady state correspondence of regular and generalized mass action systems. Bull. Math. Biol. 77(6), 1065–1100 (2015)

    Article  CAS  Google Scholar 

  21. M.D. Johnston, D. Siegel, Linear conjugacy of chemical reaction networks. J. Math. Chem. 49(7), 1263–1282 (2011)

    Article  CAS  Google Scholar 

  22. M.D. Johnston, D. Siegel, G. Szederkényi, Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency. Math. Biosci. 50(1), 274–288 (2012)

    CAS  Google Scholar 

  23. M.D. Johnston, D. Siegel, G. Szederkényi, Dynamical equivalence and linear conjugacy of chemical reaction networks: new results and methods. MATCH Commun. Math. Comput. Chem. 68(2), 443–468 (2012)

    CAS  Google Scholar 

  24. M.D. Johnston, D. Siegel, G. Szederkényi, A linear programming approach to weak reversibility and linear conjugacy of chemical reaction networks. J. Math. Chem. 50(1), 274–288 (2012)

    Article  CAS  Google Scholar 

  25. G. Lipták, G. Szederkényi, K.M. Hangos, Computing zero deficiency realizations of kinetics systems. Syst. Control Lett. 81, 24–30 (2015)

    Article  Google Scholar 

  26. A. Makhorin, GNU linear programming kit reference manual version 4.45 (2010), http://kam.mff.cuni.cz/~elias/glpk.pdf

  27. L. Michaelis, M. Menten, Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    CAS  Google Scholar 

  28. J. Rudan, G. Szederkényi, K.M. Hangos, T. Péni, Polynomial time algorithms to determine weakly reversible realizations of chemical reaction networks. J. Math. Chem. 52(5), 1386–1404 (2014)

    Article  CAS  Google Scholar 

  29. G. Shinar, M. Feinberg, Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010)

    Article  CAS  Google Scholar 

  30. G. Szederkényi, Computing sparse and dense realizations of reaction kinetic systems. J. Math. Chem. 47, 551–568 (2010)

    Article  Google Scholar 

  31. G. Szederkényi, J.R. Banga, A. Alvarez-Alonso, CRNreals: a toolbox for distinguishability and identifiability analysis of biochemical reaction networks. Bioinformatics 28(11), 1549–1550 (2012)

    Article  Google Scholar 

  32. G. Szederkényi, K. Hangos, Finding complex balanced and detailed balanced realizations of chemical reaction networks. J. Math. Chem. 49, 1163–1179 (2011)

    Article  Google Scholar 

  33. G. Szederkényi, K. Hangos, T. Péni, Maximal and minimal realizations of chemical kinetics systems: computation and properties. MATCH Commun. Math. Comput. Chem. 65, 309–332 (2011)

    Google Scholar 

  34. G. Szederkényi, K. Hangos, Z. Tuza, Finding weakly reversible realizations of chemical reaction networks using optimization. MATCH Commun. Math. Comput. Chem. 67, 193–212 (2012)

    Google Scholar 

  35. A.I. Vol’pert, S.I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics (Martinus Nijhoff Publishers, Dordrecht, 1985)

    Google Scholar 

Download references

Acknowledgments

The author gratefully thanks San José State University for its financial and logistic support, and Lake Tahoe for the serenity which lead to the conception of this project. The author also thanks the reviewers for their insightful and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Johnston.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 3 KB)

Supplementary material 2 (txt 3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, M.D. A linear programming approach to dynamical equivalence, linear conjugacy, and the Deficiency One Theorem. J Math Chem 54, 1612–1631 (2016). https://doi.org/10.1007/s10910-016-0640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0640-9

Keywords

Mathematics Subject Classification

Navigation