Skip to main content
Log in

Linear conjugacy of chemical reaction networks

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Under suitable assumptions, the dynamic behaviour of a chemical reaction network is governed by an autonomous set of polynomial ordinary differential equations over continuous variables representing the concentrations of the reactant species. It is known that two networks may possess the same governing mass-action dynamics despite disparate network structure. To date, however, there has only been limited work exploiting this phenomenon even for the cases where one network possesses known dynamics while the other does not. In this paper, we bring these known results into a broader unified theory which we call conjugate chemical reaction network theory. We present a theorem which gives conditions under which two networks with different governing mass-action dynamics may exhibit the same qualitative dynamics and use it to extend the scope of the well-known theory of weakly reversible systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberger A., Billette E.: C R Acad. Sci. Paris Sér. I Math. 319(12), 1257 (1994)

    Google Scholar 

  2. Feinberg M.: Arch. Ration. Mech. Anal. 132(4), 311 (1995)

    Article  Google Scholar 

  3. Pachter L., Sturmfels B.: Algebraic Statistics for Computational Biology. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  4. Sontag E.: IEEE Trans. Automat. Contr. 46(7), 1028 (2001)

    Article  Google Scholar 

  5. Feinberg M.: Arch. Ration. Mech. Anal. 49, 187 (1974)

    Google Scholar 

  6. Horn F.: Arch. Ration. Mech. Anal. 49, 172 (1972)

    Article  Google Scholar 

  7. Horn F., Jackson R.: Arch. Ration. Mech. Anal. 47, 81 (1972)

    Article  Google Scholar 

  8. Siegel D., Chen Y.F.: Can. Appl. Math. Q. 2, 413 (1994)

    Google Scholar 

  9. Siegel D., MacLean D.: J. Math. Chem. 27, 89 (2000)

    Article  CAS  Google Scholar 

  10. Vol’pert A.I., Hudjaev S.I.: Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus Nijhoff Publishers, Dordrecht, Netherlands (1985)

    Google Scholar 

  11. Craciun G., Feinberg M.: SIAM J. Appl. Math. 65(5), 1526 (2005)

    Article  CAS  Google Scholar 

  12. Craciun G., Feinberg M.: SIAM J. Appl. Math. 66(4), 1321 (2006)

    Article  CAS  Google Scholar 

  13. G. Craciun, C. Pantea, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010)

  14. Schlosser P.M., Feinberg M.: Chem. Eng. Sci. 49(11), 1749 (1994)

    Article  CAS  Google Scholar 

  15. Anderson D.: SIAM J. Appl. Math. 68(5), 1464 (2008)

    Article  CAS  Google Scholar 

  16. Anderson D., Shiu A.: SIAM J. Appl. Math. 70(6), 1840 (2010)

    Article  Google Scholar 

  17. Craciun G., Dickenstein A., Shiu A., Sturmfels B.: J. Symb. Comput. 44(11), 1551 (2009)

    Article  Google Scholar 

  18. G. Craciun, F. Nazarov, C. Pantea, available at arXiv:1010.3050v1

  19. Craciun G., Pantea C.: J. Math Chem. 44(1), 244 (2008)

    Article  CAS  Google Scholar 

  20. Craciun G., Pantea C., Rempala G.: Comput. Biol. Chem. 33(5), 361 (2009)

    Article  CAS  Google Scholar 

  21. Szederkényi G.: J. Math. Chem. 47, 551–568 (2010)

    Article  Google Scholar 

  22. G. Szederkényi, K. M. Hangos, available at arXiv:1010.4477.

  23. Szederkényi G., Hangos K.M., Péni T: MATCH Commun. Math. Comput. Chem 65(2), 309 (2011)

    Google Scholar 

  24. Averbukh E.D.: Automat. Remote Contr. 55(12), 1723 (1994)

    Google Scholar 

  25. Krambeck F.J.: Arch. Ration. Mech. Anal. 38, 317 (1970)

    Article  Google Scholar 

  26. MacLean, D., Master’s Thesis, University of Waterloo (1998)

  27. Perko L.: Differential Equations and Dynamical Systems. Springer, Berlin (1993)

    Google Scholar 

  28. Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (1990)

    Google Scholar 

  29. Feinberg M., Horn F.: Arch. Ration. Mech. Anal. 66, 83 (1977)

    Article  Google Scholar 

  30. Erdi P., Toth J.: Mathematical Models of Chemical Reactions. Princeton University Press, Princeton (1989)

    Google Scholar 

  31. Szederkényi G.: J. Math. Chem. 45, 1172 (2009)

    Article  Google Scholar 

  32. Hill A.V: J. Physiol 40(4), 389 (2010)

    Google Scholar 

  33. Angeli D., Leenheer P., Sontag E.: Math. Biosci. 210(2), 598 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Johnston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, M.D., Siegel, D. Linear conjugacy of chemical reaction networks. J Math Chem 49, 1263–1282 (2011). https://doi.org/10.1007/s10910-011-9817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9817-4

Keywords

Navigation