Skip to main content
Log in

Effects of aerosols in making artificial rain: a modeling study

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Rain is an important phenomenon occurring in nature. Nowadays, in some places across the world, less amount of rain is observed, which affects human population in several ways, like shortage of drinking water, less production from agriculture fields, increase in pollution level, etc. Keeping this point in view, in this paper, a mathematical model for making artificial rain is proposed and analyzed. In the modeling process, it is assumed that water vapors are continuously formed in the atmosphere and are not condensed enough to form clouds. Further, it is assumed that aerosols (mixture of two or more) are introduced in the atmosphere to increase the process of nucleation of cloud droplets from water vapors and changing them into raindrops. The qualitative analysis of the proposed model is presented using stability theory of differential equations. It is found that model exhibits only one nonnegative equilibrium. The sufficient conditions for stability of the equilibrium have been obtained. Numerical simulation is carried out to see the effect of key parameters on the process leading to rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.N. Bower, T.W. Choularton, M.W. Gallagher, R.N. Colvile, M. Wells, K.M. Beswick, A. Wiedensohler, H.C. Hansson, B. Svenningsson, E. Swietlicki, M. Wendisch, A. Berner, C. Kruisz, P. Laj, M.C. Facchini, S. Fuzzi, M. Bizjak, G. Dollard, B. Jones, K. Acker, W. Wieprecht, M. Preiss, M.A. Sutton, K.J. Hargreaves, R.L. Storeton-West, J.N. Cape, B.G. Arends, Observations and modeling of the processing of aerosol by a hill cap cloud. Atmos. Environ. 31, 2524–2543 (1997)

    Article  Google Scholar 

  2. I.M. Bulai, E. Venturino, Biodegradation of organic pollutants in a water body. J Math Chem (2016). doi:10.1007/s10910-016-0603-1

  3. D.J. Coffman, D.A. Hegg, A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J. Geophs. Res. 100, 7147–7160 (1995)

    Article  CAS  Google Scholar 

  4. R.C. Easter, P.V. Hobbs, The formation of sulphate and the enhancement of cloud condensation nuclei in clouds. J. Atmos. Sci. 31, 1586–1591 (1974)

    Article  CAS  Google Scholar 

  5. B.J. Finlayson-Pitts, J.N. Pitts Jr., Chemistry of the upper and lower atmosphere: theory, experiments and applications (Academic Press, San Diego, 2000)

    Google Scholar 

  6. A.I. Flossmann, H.R. Pruppacher, J.H. Topolian, A theoretical study of the wet removal of atmospheric pollutants, II, The uptake and redistribution of \(({\rm NH}_{4})_{2}{\rm SO}_{4}\) particles and \({\rm SO}_{2}\) gas simultaneously scavenged by growing cloud drops. J. Atmos. Sci. 44, 2912–2923 (1987)

    Article  Google Scholar 

  7. D.A. Hegg, Heterogeneous production of cloud condensation nuclei in the marine atmosphere. Geophys. Res. Lett. 17, 2165–2168 (1990)

    Article  Google Scholar 

  8. D.A. Hegg, The impact of clouds on aerosol populations, IGACtivities. No. 23, (April 2001)

  9. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson, Climate change 2001: the scientific basis (Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change) (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  10. J.G. Hudson, P.R. Frisbie, Cloud condensation nuclei near marine stratus. J. Geophys. Res 96, 20,795–20,808 (1991)

    Article  CAS  Google Scholar 

  11. M.E. Jenkin, Modelling the formation and composition of secondary organic aerosol from \(\alpha -\) and \(\beta -\) pinene ozonolysis using MCM v3. Atmos. Chem. Phys. 4, 1741–1757 (2004)

    Article  CAS  Google Scholar 

  12. J. Lelieveld, J. Heintzenberg, Sulphate cooling effect on climate through in-cloud oxidation of anthropogenic \({\rm SO}_{2}\). Science 258, 117–120 (1992)

    Article  CAS  Google Scholar 

  13. U. Lohmann, J. Feichter, Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)

    Article  CAS  Google Scholar 

  14. A.K. Misra, Modeling the depletion of dissolved oxygen in a lake due to submerged macrophytes. Nonlinear Anal. Model. Control. 15(2), 185–198 (2010)

    Google Scholar 

  15. R. Narasimhan, How is artificial rain produced, The Hindu, www.hinduonnet.com/thehindu/seta/2002/05/30/stories/2002053000190300.htm, (2002)

  16. S.N. Pandis, J.H. Seinfeld, C. Pilinis, Chemical composition differences in fog and cloud droplets of different sizes. Atmos. Environ. 24A, 1954–1969 (1990)

    Google Scholar 

  17. U. Pöschl, Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44, 7520–7540 (2005)

    Article  Google Scholar 

  18. H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation, 2nd edn. (Kluwer Acadmic Publications, Dordrecht, 1997)

    Google Scholar 

  19. V.K. Saxena, J.D. Grovenstein, The role of clouds in the enhancement of cloud condensation nuclei concentrations. Atmos. Res. 31, 71–89 (1994)

    Article  CAS  Google Scholar 

  20. G. Shaw, Production of condensation nuclei in clean air by nucleation of \({\rm H}_{2}{\rm SO}_{2}\). Atmos. Environ. 23, 2841–2846 (1989)

    Article  CAS  Google Scholar 

  21. J.B. Shukla, A.K. Misra, S. Sundar, R. Naresh, Effect of rain o removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city. Math. Comput. Model 48, 832–844 (2007)

    Article  Google Scholar 

  22. J.B. Shukla, S. Sundar, A.K. Misra, R. Naresh, Modelling the removal of gaseous pollutants and particulate matters from the atmosphere of a city by rain: effect of cloud density. Environ. Model. Assess. 13, 255–263 (2008)

    Article  Google Scholar 

  23. J.B. Shukla, A.K. Misra, R. Naresh, P. Chandra, How artificial rain can be produced? A mathematical model. Nonlinear Anal RWA 11, 2659–2668 (2010)

    Article  Google Scholar 

  24. J.B. Shukla, S. Sundar, A.K. Misra, R. Naresh, Modeling the effects of aerosols to increase rainfall in regions with shortage. Meteorol. Atmos. Phys. 120, 157–163 (2013)

    Article  Google Scholar 

  25. S. Sundar, R.K. Sharma, The role of aerosols to increase rainfall in the regions with less intensity rain: a modeling study. Comput. Ecol. Softw. 3(1), 1–8 (2013)

    Google Scholar 

  26. Xinhua News Agency, China makes artificial rain for Beijing, www.chinadaily.com.cn/china/2006-05/06/content-583222.htm, (2006)

Download references

Acknowledgments

Author is thankful to the handling editor and both the referees for their useful suggestions. Author also thankfully acknowledges Dr. M.K. Bharty, Department of Chemistry, Institute of Science, BHU Varanasi for making discussions on the chemical properties of aerosols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Misra.

Appendix

Appendix

1.1 1: Proof of Theorem 1

We linearize the system (1) about \(E^*\) by using the following transformations

$$\begin{aligned} C_v=C_v^*+C_{v1}, C_d=C_d^*+C_{d1}, C_r=C_r^*+C_{r1}, C_h=C_h^*+C_{h1}. \end{aligned}$$
(18)

Now consider the following positive definite function

$$\begin{aligned} V=\frac{1}{2}(C_{v1}^2+m_1C_{d1}^2+m_2C_{r1}^2+m_3C_{h1}^2) \end{aligned}$$
(19)

(where \(m_1 , m_2 , m_3 \) are some positive constants to be chosen appropriately). Differentiating above equation with respect to t along the solutions of linearized system of (1), we get

$$\begin{aligned} \frac{dV}{dt}=- & {} (\theta _0+\theta _1C_h^*)C_{v1}^2-m_1(\lambda _0+\lambda _1C_h^*)C_{d1}^2-m_2r_0C_{r1}^2 -m_3a^*C_{h1}^2 \nonumber \\+ & {} C_{v1}C_{h1}\left[ -\theta _1C_v^*-m_3\theta _1C_h^*\right] \nonumber \\+ & {} C_{v1}C_{d1}\left[ m_1(\lambda +\pi _1\theta _1C_h^*)\right] \nonumber \\+ & {} C_{d1}C_{h1}\left[ m_1(\pi _1\theta _1C_v^*-\lambda _1C_d^*)-m_3\lambda _1C_h^*\right] \nonumber \\+ & {} C_{d1}C_{r1}\left[ m_2(r+\pi _2\lambda _1C_h^*)\right] \nonumber \\+ & {} C_{r1}C_{h1}\left[ m_2\pi _2\lambda _1C_d^*-m_3\lambda _2C_h^*\right] . \end{aligned}$$
(20)

Choosing \(m_2=m_1\frac{\pi _1\theta _1\lambda _2C_v^*}{\pi _2\lambda _1^2C_d^*}\) and \(m_3=m_1\frac{\pi _1\theta _1C_v^*}{\lambda _1C_h^*}\), \(\frac{dV}{dt}\)is simplified as:

$$\begin{aligned} \frac{dV}{dt}=- & {} (\theta _0+\theta _1C_h^*)C_{v1}^2-m_1(\lambda _0+\lambda _1C_h^*)C_{d1}^2 -m_1\frac{\pi _1\theta _1\lambda _2r_0C_v^*}{\pi _2\lambda _1^2C_d^*}C_{r1}^2\nonumber \\- & {} m_1\frac{\pi _1\theta _1a^*C_v^*}{\lambda _1C_h^*}C_{h1}^2 \nonumber \\+ & {} C_{v1}C_{h1}\left[ -\theta _1C_v^*\right] \nonumber \\+ & {} C_{v1}C_{h1}\left[ -m_1\frac{\pi _1\theta _1^2C_v^*}{\lambda _1}\right] \nonumber \\+ & {} C_{v1}C_{d1}\left[ m_1(\lambda +\pi _1\theta _1C_h^*)\right] \nonumber \\+ & {} C_{d1}C_{h1}\left[ -m_1\lambda _1C_d^*\right] \nonumber \\+ & {} C_{d1}C_{r1}\left[ m_1\frac{\pi _1\theta _1\lambda _2C_v^*}{\pi _2\lambda _1^2C_d^*}(r+\pi _2\lambda _1C_h^*)\right] . \end{aligned}$$
(21)

Now \(\frac{dV}{dt}\) will be negative definite provided the conditions (11), (12) and (13) are satisfied.

1.2 2: Proof of Theorem 2

To prove this theorem we consider the following positive definite function about \(E^*\),

$$\begin{aligned} U=\frac{1}{2}\left[ (C_v-C_v^*)^2+k_1(C_d-C_d^*)^2+k_2(C_r-C_r^*)^2+k_3(C_h-C_h^*)^2\right] \end{aligned}$$
(22)

(where \(k_1 , k_2 , k_3 \) are some positive constants to be chosen appropriately). Differentiating above equation with respect to t along the solutions of system (1) and making simple algebraic manipulations, we get

$$\begin{aligned} \frac{dU}{dt}=- & {} k_3(\theta _1C_v+\lambda _1C_d+\lambda _2C_r)(C_h-C_h^*)^2\nonumber \\- & {} (\theta _0+\theta _1C_h^*)(C_v-C_v^*)^2-k_1(\lambda _0+\lambda _1C_h^*)(C_d-C_d^*)^2\nonumber \\- & {} k_2r_0(C_r-C_r^*)^2-k_3\delta _h(C_h-C_h^*)^2\nonumber \\+ & {} (C_v-C_v^*)(C_h-C_h^*)\left[ -\theta _1C_v\right] \nonumber \\+ & {} (C_v-C_v^*)(C_h-C_h^*)\left[ -k_3\theta _1C_h^*\right] \nonumber \\+ & {} (C_v-C_v^*)(C_d-C_d^*)\left[ -k_1(\lambda +\pi _1\theta _1C_h)\right] \nonumber \\+ & {} (C_d-C_d^*)(C_h-C_h^*)\left[ k_1(\pi _1\theta _1C_v^*-\lambda _1C_d)-k_3\lambda _1C_h^*\right] \nonumber \\+ & {} (C_d-C_d^*)(C_r-C_r^*)\left[ k_2(r+\pi _2\lambda _1C_h)\right] \nonumber \\+ & {} (C_r-C_r^*)(C_h-C_h^*)\left[ k_2\pi _2\lambda _1C_d^*-k_3\lambda _2C_h^*\right] . \end{aligned}$$
(23)

Choosing \(k_2=k_1\frac{\pi _1\theta _1\lambda _2C_v^*}{\pi _2\lambda _1^2C_d^*}\) and \(k_3=k_1\frac{\pi _1\theta _1C_v^*}{\lambda _1C_h^*}\), \(\frac{dU}{dt}\)is simplified as

$$\begin{aligned} \frac{dU}{dt}=- & {} k_1\frac{\pi _1\theta _1C_v^*}{\lambda _1C_h^*}(\theta _1C_v+\lambda _1C_d +\lambda _2C_r)(C_h-C_h^*)^2\nonumber \\- & {} (\theta _0+\theta _1C_h^*)(C_v-C_v^*)^2-k_1(\lambda _0+\lambda _1C_h^*)(C_d-C_d^*)^2\nonumber \\- & {} k_1\frac{\pi _1\theta _1\lambda _2C_v^*}{\pi _2\lambda _1^2C_d^*}r_0(C_r-C_r^*)^2 -k_1\frac{\pi _1\theta _1C_v^*}{\lambda _1C_h^*}\delta _h(C_h-C_h^*)^2\nonumber \\+ & {} (C_v-C_v^*)(C_h-C_h^*)\left[ -\theta _1C_v\right] \nonumber \\+ & {} (C_v-C_v^*)(C_h-C_h^*)\left[ -k_1\frac{\pi _1\theta _1^2C_v^*}{\lambda _1}\theta _1C_h^*\right] \nonumber \\+ & {} (C_v-C_v^*)(C_d-C_d^*)\left[ -k_1(\lambda +\pi _1\theta _1C_h)\right] \nonumber \\+ & {} (C_d-C_d^*)(C_h-C_h^*)\left[ -k_1\lambda _1C_d\right] \nonumber \\+ & {} (C_d-C_d^*)(C_r-C_r^*)\left[ k_1\frac{\pi _1\theta _1\lambda _2C_v^*}{\pi _2\lambda _1^2C_d^*} (r+\pi _2\lambda _1C_h)\right] . \end{aligned}$$
(24)

Now \(\frac{dU}{dt}\) will be negative definite inside the region of attraction provided the following conditions are satisfied:

$$\begin{aligned}&\left[ \theta _1\frac{Q_v}{\theta _0}\right] ^2<\frac{4}{9}k_1\delta _h \frac{\pi _1\theta _1C_v^*}{\lambda _1C_h^*}(\theta _0+\theta _1C_h^*) \end{aligned}$$
(25)
$$\begin{aligned}&k_1\left[ \frac{\pi _1\theta _1^2C_v^*}{\lambda _1}\right] ^2<\frac{4}{9}\delta _h \frac{\pi _1\theta _1C_v^*}{\lambda _1C_h^*}(\theta _0+\theta _1C_h^*) \end{aligned}$$
(26)
$$\begin{aligned}&k_1\left[ \lambda +\pi _1\theta _1\frac{Q_h}{\delta _h}\right] ^2<\frac{4}{9}(\theta _0+\theta _1C_h^*) (\lambda _0+\lambda _1C_h^*) \end{aligned}$$
(27)
$$\begin{aligned}&(\lambda _1R_d)^2<\frac{4}{9}\delta _h\frac{\pi _1\theta _1C_v^*}{\lambda _1C_h^*}(\lambda _0+\lambda _1C_h^*) \end{aligned}$$
(28)
$$\begin{aligned}&\frac{\pi _1\theta _1\lambda _2C_v^*}{\pi _2\lambda _1^2C_d^*} \left[ r+\frac{\pi _2\lambda _1Q_h}{\delta _h}\right] ^2<\frac{4}{3}r_0(\lambda _0+\lambda _1C_h^*) \end{aligned}$$
(29)

From above inequalities (25), (26) and (27), we may choose \(k_1>0\) if the following condition is satisfied:

$$\begin{aligned} \lambda _1\theta _1C_v^*C_h^*<\frac{16}{81}\pi _1\theta _0^2\delta _h \min \left[ \frac{\lambda _1\delta _h}{\pi _1\theta _1^3C_v^*C_h^*}, \frac{\lambda _0+\lambda _1C_h^*}{\lambda +\pi _1\theta _1\frac{Q_h}{\delta _h}}\right] . \end{aligned}$$
(30)

Here we have used the fact that \((\theta _0+\theta _1C_h^*)=Q_v/C_v^*\). Thus, the system (1) is globally stable inside the region of attraction if the conditions (14), (15) and (16) are satisfied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A.K. Effects of aerosols in making artificial rain: a modeling study. J Math Chem 54, 1596–1611 (2016). https://doi.org/10.1007/s10910-016-0639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0639-2

Keywords

Navigation