Skip to main content
Log in

Entropy production as a universal functional of reaction rate: chemical networks close to steady states

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Entropy production rate (EPR) is the fundamental theoretical quantity in non-equilibrium thermodynamics whereas reaction rate is the primary experimental quantity for a chemical system out-of-equilibrium. In this work, we explore a connection between the above two quantities for general reaction networks. Both cyclic and linear networks of arbitrary dimension are studied, along with a mixed variety. The systems can attain a non-equilibrium steady state (NESS) under chemiostatic condition, which becomes the state of true thermodynamic equilibrium when detailed balance holds. We show that there exists a universal functional relationship of the EPR with reaction rate close to steady states for all the networks considered. Near a NESS, the former varies linearly with the reaction rate. On the other hand, around a true equilibrium, it varies quadratically with the latter. Numerical experiments justify our analytical findings quite transparently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Miskinis, J. Math. Chem. 51, 914 (2013)

    Article  CAS  Google Scholar 

  2. B. Boros, J. Math. Chem. 51, 2455 (2013)

    Article  CAS  Google Scholar 

  3. H.J. Hwang, J.J.L. Velazquez. J. Math. Chem. 51, 1343 (2013); ibid. 51, 2074 (2013).

  4. C.H. Lee, K.D. Park, B. Jang, J. Math. Chem. 51, 1945 (2013)

    Article  CAS  Google Scholar 

  5. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)

  6. G. Nicolis, I. Prigogine, Self-organization in Non-equilibrium Systems (from Dissipative Structures to order through Fluctuations), (John Wiley and Sons, New York, 1977)

  7. J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976)

    Article  Google Scholar 

  8. D. Andrieux, P. Gaspard, J. Chem. Phys. 121, 6167 (2004)

    Article  CAS  Google Scholar 

  9. P. Gaspard, J. Chem. Phys. 120, 8898 (2004)

    Article  CAS  Google Scholar 

  10. H. Qian, D.A. Beard, Biophys. Chem. 114, 213 (2005)

    Article  CAS  Google Scholar 

  11. H. Qian, E.L. Elson, Biophys. Chem 101, 565 (2002)

    Article  Google Scholar 

  12. X.J. Zhang, H. Qian, M. Qian, Phys. Rep. 510, 87 (2012)

    Article  Google Scholar 

  13. D.Q. Jiang, M. Qian, M.P. Qian, Mathematical Theory of Nonequilibrium Steady States. Lect. Notes Math., Vol. 1833, (Springer, New York, 2004)

  14. K. Banerjee, B. Das, G. Gangopadhyay, J. Chem. Phys. 136, 154502 (2012)

    Article  Google Scholar 

  15. W. Min, L. Jiang, J. Yu, S.C. Kou, H. Qian, X.S. Xie, Nano Lett. 5, 2373 (2005)

    Article  CAS  Google Scholar 

  16. H. Qian, Annu. Rev. Phys. Chem. 58, 113 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K. Banerjee acknowledges the University Grants Commission (UGC), India for Dr. D. S. Kothari Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, K., Bhattacharyya, K. Entropy production as a universal functional of reaction rate: chemical networks close to steady states. J Math Chem 52, 820–832 (2014). https://doi.org/10.1007/s10910-013-0295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0295-8

Keywords

Navigation