Skip to main content
Log in

Modelling linear reactions in inhomogeneous catalytic systems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of linear chemical reactions in an inhomogeneous medium is modeled as an evolutionary system characterized by a fractional derivative. The corresponding mathematical model depending on one nonlocal parameter \(0< \alpha <1\) is proposed. Reactions with one degree of freedom are analyzed. Solutions of the corresponding kinetic equations are shown to depend on the nonlocality parameter \(\alpha \). The concept of the critical moment of time is introduced, and the dependence of its value on the value of the relaxation coefficient is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R.D. Levine, Molecular Reaction Dynamics (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  2. H. Gutfreund, Kinetics for the Life Sciences: Receptors, Transmitters and Catalysts (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  3. A.N. Gorban, I.V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics (Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  4. A.M. Zhabotinsky, Concentrated Auto-Oscillations (Nauka, Moscow, 1974, in Russian)

  5. P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions (Princeton University Press, Princeton, 1989)

    Google Scholar 

  6. A.N. Gorban, V.I. Bykov, G.S. Yablonsky, Story about Chemical Relaxation (Nauka, Novosibirsk, 1986, in Russian)

  7. P. Miškinis, Math. Model. Anal. 15(2), 235 (2010)

    Article  Google Scholar 

  8. F. Amblard, A.C. Maggs, B. Yurke, A.N. Pargellis, S. Leibler, Phys. Rev. Lett. 77, 4470 (1996)

    Article  CAS  Google Scholar 

  9. J.-P. Bouchaud, A. Georges, J. Koplik, A. Provata, S. Redner, Phys. Rev. Lett. 64, 2503 (1990)

    Article  Google Scholar 

  10. M. Barlow, E. Perkins, Prob. Theory Relat. Fields 79, 543 (1988)

    Article  Google Scholar 

  11. M.T. Barlow, R.F. Bass, J. Funct. Anal. 175, 214 (2000)

    Article  Google Scholar 

  12. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Yverdon, 1993)

    Google Scholar 

  13. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    Google Scholar 

  14. P. Miškinis, Nonlinear and nonlocal integrable models (Technika, Vilnius, 2003)

    Google Scholar 

  15. W.C. Bray, J. Am. Chem. Soc. 43(6), 1262 (1921)

    Article  CAS  Google Scholar 

  16. B.P. Belousov, Collect. Abstr. Radiat. Med. 147, 145 (1959). (in Russian)

  17. A.M. Zhabotinsky, Biofizika 9, 306 (1964). (in Russian)

    Google Scholar 

  18. J. Higgins, Ind. Eng. Chem. 59, 19 (1967)

    Article  Google Scholar 

  19. R.M. Noyes, R.J. Field, E. Körös, J. Am. Chem. Soc. 94, 1394 (1972)

    Article  CAS  Google Scholar 

  20. A.A. Andronov, A.A. Vitt, S.E. Khaikin, Theory of Oscillators (Dover Publications, New York, 1987)

    Google Scholar 

  21. W. Jost, Z. Phys. Chem. 105, 317 (1950)

    Google Scholar 

  22. J. Meixner, Phys. Blätter 16, 506 (1960)

    Google Scholar 

  23. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, Netherlands, 2006)

    Google Scholar 

  24. H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications [http://arxiv.org/arxiv:0909.0230v2]

  25. R. Csikja, J. Tóth, Enformatika. Int. J. Appl. Math. Comput. Sci. 4(2), 728 (2007)

    Google Scholar 

  26. P. Grindrod, Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations (Clarendon Press, Oxford, 1991)

    Google Scholar 

  27. Selected Papers of Norbert Wiener (MIT Press & SIAM, Cambridge, MA, 1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulius Miškinis.

Appendix

Appendix

The left Riemann–Liouville fractional derivative

$$\begin{aligned} { }_a^{RL}{D_{t+}}^\alpha f(t)=\frac{1}{{\varGamma }(n-\alpha )}\left( {\frac{d}{dt}} \right)^{n}\int \limits _a^t {\frac{f(\tau )d\tau }{(t-\tau )^{1+\alpha -n}}.} \end{aligned}$$
(30)

The right fractional derivative

$$\begin{aligned} { }_b^{RL}{D_{t-}}^\alpha f(t)=\frac{1}{{\varGamma }(n-\alpha )}\left( {-\frac{d}{dt}} \right)^{n}\int \limits _t^b {\frac{f(\tau )d\tau }{(\tau -t)^{1+\alpha -n}} ,} \end{aligned}$$
(31)

where \(n=|\alpha |+1\) and \(\alpha >0\).

Unfortunately, the Riemann–Liouville fractional derivative of the constant function is non-zero. This is not convenient when analysing, e.g., the asymptotic and other states. To escape this inconvenience, the corresponding Caputo fractional derivatives are defined as follows:

  • the left Caputo fractional derivative

    $$\begin{aligned} { }_aD_{t+}^\alpha f(t)=\frac{1}{{\varGamma }(n-\alpha )}\int \limits _a^t {\frac{d\tau }{(t-\tau )^{1+\alpha -n}}\left( {\frac{df(\tau )}{d\tau }} \right)^{n}} \end{aligned}$$
    (32)
  • the right Caputo fractional derivative

    $$\begin{aligned} { }_bD_{t-}^\alpha f(t)=\frac{1}{{\varGamma }(n-\alpha )}\int \limits _t^b {\frac{d\tau }{(\tau -t)^{1+\alpha -n}}\left( {\frac{df(\tau )}{d\tau }} \right)^{n},} \end{aligned}$$
    (33)

where \(\alpha \) represents the order of the derivative: \(n-1<\alpha <n\) and \(\alpha >0\).

The relationship between the Riemann–Liouville and the Caputo fractional derivatives is \((0<\alpha <1)\):

$$\begin{aligned} { }_aD_{t+}^\alpha f(t)&= { }_a^{RL}{D_{t+}}^\alpha f(t)-\frac{1}{{\varGamma }(1-\alpha )}\frac{f(a)}{(t-a)^{\alpha }},\end{aligned}$$
(34)
$$\begin{aligned} { }_bD_{t-}^\alpha f(t)&= { }_b^{RL}{D_{t-}}^\alpha f(t)-\frac{1}{{\varGamma }(1-\alpha )}\frac{f(b)}{(b-t)^{\alpha }}. \end{aligned}$$
(35)

Thus, e.g., the left Riemann–Liouville fractional derivative of the constant function \(C\) equals \(C/\left| {{\varGamma }(1-\alpha )(t-a)^{\alpha }} \right|\), whereas the left Caputo fractional derivative is equal to zero. On the other hand, many properties of the Caputo fractional derivatives are the same as those of the Riemann–Liouville fractional derivative when \(f(a)=f(b)=0\):

$$\begin{aligned}&{ }_aD_{t+}^{-\alpha } f(t)={ }_aI_{t+}^\alpha f(t),\quad { }_bD_{t-}^{-\alpha } f(t)={ }_bI_{t-}^\alpha f(t),\quad \quad \alpha >0\end{aligned}$$
(36)
$$\begin{aligned}&{ }_aI_{t+}^\alpha f(t)=\frac{1}{{\varGamma }(\alpha )}\int \limits _a^t {\frac{f(\tau )d\tau }{(t-\tau )^{1-\alpha }}} -,\quad \quad t>a,\end{aligned}$$
(37)
$$\begin{aligned}&{ }_bI_{t-}^\alpha f(t)=\frac{1}{{\varGamma }(\alpha )}\int \limits _t^b {\frac{f(\tau )d\tau }{(\tau -t)^{1-\alpha }}} -,\quad \quad t<b,\end{aligned}$$
(38)
$$\begin{aligned}&{ }_aD_{t+}^\alpha f(t)={ }_aI_{t+}^{-\alpha } f(t),\quad \quad { }_bD_{t-}^\alpha f(t)={ }_bI_{t-}^{-\alpha } f(t),\quad \quad \alpha >0\end{aligned}$$
(39)
$$\begin{aligned}&{ }_aD_{t+}^\alpha { }_aD_{t+}^\beta f(t)={ }_aD_{t+}^\beta { }_aD_{t+}^\alpha f(t)={ }_aD_{t+}^{\alpha +\beta } f(t),\end{aligned}$$
(40)
$$\begin{aligned}&{ }_aI_{t+}^\alpha { }_aI_{t+}^\beta f(t)={ }_aI_{t+}^\beta { }_aI_{t+}^\alpha f(t)={ }_aI_{t+}^{\alpha +\beta } f(t), \end{aligned}$$
(41)

The analogue of the Taylor expansion is valid here:

$$\begin{aligned} f(t)=\sum _{i=0}^{n-1} {\frac{{ }_aD_{t+}^{\alpha +j} f(0)}{{\varGamma }(1+\alpha +j)}} t^{\alpha +j}+R_n (t),\quad \quad n=\left[ {\text{ Re} \alpha } \right]+1, \end{aligned}$$
(42)

where \(R_n (t) ={ }_aI_{t+}^{\alpha +j} { }_aD_{t+}^{\alpha +j} f(t)\).

As an example, let us consider the derivatives of some functions:

$$\begin{aligned}&{ }_{-\infty }D_{t+}^\alpha \sin \lambda t=\lambda ^{\alpha }\sin \left( {\lambda t+\frac{\pi \alpha }{2}} \right),\end{aligned}$$
(43)
$$\begin{aligned}&{ }_{-\infty }D_{t+}^\alpha \cos \lambda t=\lambda ^{\alpha }\cos \left( {\lambda t+\frac{\pi \alpha }{2}} \right), \end{aligned}$$
(44)

where \(\lambda >0, \quad \alpha >-1. \) When \(\alpha \le -1,\)we have to use the property (39):

$$\begin{aligned} { }_{-\infty }D_{t+}^\alpha e^{\lambda t+\mu }=\lambda ^{\alpha }e^{\lambda t+\mu },\quad \quad \text{ Re} \lambda >0. \end{aligned}$$
(45)

Some special functions, e.g., the Mittag-Leffler function

$$\begin{aligned} E_{\alpha ,\beta } (z)=\sum _{n=0}^\infty {\frac{z^{n}}{{\varGamma }(\alpha n+\beta )}} \end{aligned}$$
(46)

and the generalized exponential function

$$\begin{aligned} 1+E_\alpha ^z =1+\sum _{n=0}^\infty {\frac{z^{n+\alpha }}{{\varGamma }(1+\alpha +n)}} , \end{aligned}$$
(47)

naturally appear and are widely used in fractional calculus.

In this paper, the fractional Caputo derivative \({ }_{t_0 }D_{t+}^\alpha =\frac{d^{\alpha }}{dt^{\alpha }}\) is used.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miškinis, P. Modelling linear reactions in inhomogeneous catalytic systems. J Math Chem 51, 914–926 (2013). https://doi.org/10.1007/s10910-012-0125-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0125-4

Keywords

Navigation