Skip to main content
Log in

ZIBgridfree: efficient conformational analysis by partition-of-unity coupling

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Obtaining a sufficient sampling of conformational space is a common problem in molecular simulation. We present the implementation of an umbrella-like adaptive sampling approach based on function-based meshless discretization of conformational space that is compatible with state of the art molecular dynamics code and that integrates an eigenvector-based clustering approach for conformational analysis and the computation of inter-conformational transition rates. The approach is applied to three example systems, namely \(n\)-pentane, alanine dipeptide, and a small synthetic host-guest system, the latter two including explicitly modeled solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Torrie, J. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977)

    Article  Google Scholar 

  2. A. Amadei, A. Linssen, H. Berendsen, Essential dynamics of proteins. Proteins: Struct. Funct. Genet. 17, 412–425 (1993)

    Article  CAS  Google Scholar 

  3. Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)

    Article  CAS  Google Scholar 

  4. M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. Broglia, M. Parrinello, PLUMED: a portable plugin for free energy calculations with molecular dynamics. Comput. Phys. Comm. 180, 1961–1972 (2009)

    Article  CAS  Google Scholar 

  5. M. Weber, H. Meyer, ZIBgridfree—Adaptive Conformation Analysis with Qualified Support of Transition States and Thermodynamic Weights (2005)

  6. P. Deuflhard, in Trends in Nonlinear Analysis, eds. by M. Kirkilionis, S. Krömker, R. Rannacher, F. Tomi (Springer, Berlin, 2003), pp. 269–288

  7. S. Kube, M. Weber, A coarse graining method for the identification of transition rates between molecular conformations. J. Chem. Phys. 126, 024103 (2007)

    Article  Google Scholar 

  8. M. Sarich, F. Noe, C. Schuette, On the approximation quality of Markov state model. Multiscale Model. Simul. 8, 1154–1177 (2010)

    Google Scholar 

  9. K. Fackeldey, A. Bujotzek, M. Weber, A meshless discretization method for Markov state models applied to explicit water peptide folding simulations, in Lecture Notes in Computational Science and Engineering, vol. 89 (Springer, 2012), pp. 141–154

  10. J. Prinz, J. Chodera, V. Pande, W. Swope, J.C. Smith, Noe F., Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamicsReplica-exchange molecular dynamics method for protein folding. J Chem Phys. 134, 244108 (2011)

    Google Scholar 

  11. M. Weber, Meshless Methods in Conformation Dynamics. Doctoral thesis, Freie Universität Berlin, Department of Mathematics and Computer Science (2006)

  12. B. de Groot, D. van Aalten, R. Scheek, A. Amadei, G. Vriend, H. Berendsen, Prediction of protein conformational freedom from distance constraints. Proteins: Struct. Funct. Genet. 29, 240–251 (1997)

    Article  Google Scholar 

  13. D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in Proceedings of 23rd ACM National Conference (1968), pp. 517–524

  14. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  15. A. Gelman, D. Rubin, Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)

    Article  Google Scholar 

  16. M. Klimm, A. Bujotzek, M. Weber, Direct reweighting strategies in conformation dynamics. MATCH Commun. Math. Comput. Chem. 65, 333–346 (2011)

    CAS  Google Scholar 

  17. S. Kumar, J.M. Rosenberg, D. Bouzida, R.H. Swendsen, P.A. Kollman, Multidimensional free-energy calculations using the weighted histogram analysis method. J. Comput. Chem. 16, 1339–1350 (1995)

    Article  CAS  Google Scholar 

  18. B. Roux, The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 91, 275–282 (1995)

    Article  CAS  Google Scholar 

  19. M. Weber, S. Kube, L. Walter, P. Deuflhard, Stable computation of probability densities for metastable dynamical systems. Multiscale Model. Simul. 6, 396–416 (2007)

    Article  Google Scholar 

  20. R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35, 876–879 (1964)

    Article  Google Scholar 

  21. P. Deuflhard, M. Weber, Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398, 161–184 (2005)

    Article  Google Scholar 

  22. M. Weber, S. Kube, Robust Perron cluster analysis for various applications in computational life science, in Computational Life Sciences: First International Symposium, CompLife 2005, ed. by M.R. Berthold et al. (Springer, Heidelberg, 2005), pp. 57–66

  23. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling, Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct.: Funct. Bioinf. 65, 712–725 (2006)

    Article  CAS  Google Scholar 

  24. A. da Silva, W. Vranken, ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 5, 367 (2012)

    Article  Google Scholar 

  25. J. Wang, R. Wolf, J. Caldwell, P. Kollman, D. Case, Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  26. J. Wang, W. Wang, P. Kollman, D. Case, Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

    Article  Google Scholar 

  27. D. Case, T. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. Merz Jr, A. Onufriev, C. Simmerling, B. Wang, R. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

  28. A. Jakalian, B. Bush, D. Jack, C. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000)

    Article  CAS  Google Scholar 

  29. A. Jakalian, D. Jack, C. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002)

    Article  CAS  Google Scholar 

  30. H.W. Horn, W.C. Swope, J.W. Pitera, J.D. Madura, T.J. Dick, G.L. Hura, T. Head-Gordon, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665–9678 (2004)

    Article  Google Scholar 

  31. H. Horn, W. Swope, J. Pitera, Characterization of the TIP4P-Ew water model: vapor pressure and boiling point. J. Chem. Phys. 123, 194504 (2005)

    Article  Google Scholar 

  32. C. Caleman, P. van Maaren, M. Hong, J. Hub, L. Costa, D. van der Spoel, Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J. Chem. Theory Comput. 8, 61–74 (2011)

    Article  Google Scholar 

  33. D. van der Spoel, P. van Maaren, C. Caleman, GROMACS molecule & liquid database. Bioinformatics 28, 752–753 (2012)

    Article  Google Scholar 

  34. U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, L. Pedersen, A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995)

    Article  CAS  Google Scholar 

  35. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  Google Scholar 

  36. W. Van Gunsteren, H. Berendsen, A leap-frog algorithm for stochastic dynamics. Mol. Simul. 1, 173–185 (1988)

    Article  Google Scholar 

  37. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981)

    Article  CAS  Google Scholar 

  38. S. Nose, M. Klein, Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983)

    Article  Google Scholar 

  39. C. Schütte, Conformational Dynamics: Modelling, Theory, Algorithm and Application to Biomolecules. Habilitation thesis, Freie Universität Berlin, Department of Mathematics and Computer Science (1999)

  40. T. Halgren, Merck molecular force field: I–V. J. Comput. Chem. 17, 490–641 (1996)

    Article  CAS  Google Scholar 

  41. J. Chodera, W. Swope, J. Pitera, K. Dill, Long-time protein folding dynamics from short-time molecular dynamics simulations. Multiscale Model. Simul. 5, 1214 (2006)

    Article  Google Scholar 

  42. L. von Krbek, Multivalente Krone–Ammonium–Komplexe (Freie Universität Berlin, Fachbereich Chemie, Biologie, Pharmazie, Master’s thesis, 2012)

  43. M. Weber, A Subspace Approach to Molecular Markov State Models via a New Infinitesimal Generator. Habilitation thesis, Freie Universität Berlin, 2011; Department of Mathematics and Computer Science. This material is available free of charge via the Internet at http://pubs.acs.org

Download references

Acknowledgments

We would like to thank Larissa von Krbek and Prof. Dr. Christoph Schalley for providing their host-guest system for the binding study. The work of John Hunter (1968–2012), whose creation Matplotlib is extensively used in the ZIBMolPy library, is gratefully acknowledged. Furthermore, we would like to thank the Deutsche Forschungsgemeinschaft (SFB 765) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Fackeldey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujotzek, A., Schütt, O., Nielsen, A. et al. ZIBgridfree: efficient conformational analysis by partition-of-unity coupling. J Math Chem 52, 781–804 (2014). https://doi.org/10.1007/s10910-013-0265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0265-1

Keywords

Navigation