Skip to main content
Log in

Schrödinger equations on \({\mathbb{R}^3 \times \mathcal{M}}\) with non-separable potential

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We consider the problem of defining the Schrödinger equation for a hydrogen atom on \({\mathbb{R}^3 \times \mathcal{M}}\) where \({\mathcal{M}}\) denotes an m dimensional compact manifold. In the present study, we discuss a method of taking non-separable potentials into account, so that both the non-compact standard dimensions and the compact extra dimensions contribute to the potential energy analogously to the radial dependence in the case of only non-compact standard dimensions. While the hydrogen atom in a space of the form \({\mathbb{R}^3 \times \mathcal{M}}\) , where \({\mathcal{M}}\) may be a generalized manifold obeying certain properties, was studied by Van Gorder (J Math Phys 51:122104, 2010), that study was restricted to cases in which the potential taken permitted a clean separation between the variables over \({\mathbb{R}^3}\) and \({\mathcal{M}}\) . Furthermore, though there have been studies on the Coulomb problems over various manifolds, such studies do not consider the case where some of the dimensions are non-compact and others are compact. In the presence of non-separable potential energy, and unlike the case of completely separable potential, a complete knowledge of the former case does not imply a knowledge of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mladenov I., Tsanov V.: Geometric quantization of the multidimensional Kepler problem. J. Geom. Phys. 2, 17–24 (1985)

    Article  Google Scholar 

  2. Aquilanti V., Cavalli S., Coletti C.: The d-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets. Chem. Phys. 214, 1–13 (1997)

    Article  CAS  Google Scholar 

  3. Hosoya H.: Hierarchical structure of the atomic orbital wave functions of d-dimensional atom. J. Phys. Chem. A 101, 418–421 (1997)

    Article  CAS  Google Scholar 

  4. Hosoya H.: Pascal’s triangle, non-adjacent numbers, and D-dimensional atomic orbitals. J. Math. Chem. 23, 169–178 (1998)

    Article  CAS  Google Scholar 

  5. Ka-Lin S., An-ling L.: D-dimensional q-harmonic oscillator and d-dimension q-hydrogen atom. Int. J. Theor. Phys. 38, 2289–2295 (1999)

    Article  Google Scholar 

  6. Wipf A., Kirchberg A., Länge D.: Algebraic solution of the supersymmetric hydrogen atom. Bulg. J. Phys. 33, 206–216 (2006)

    CAS  Google Scholar 

  7. Zeng G.-J., Su K.-L., Li M.: Most general and simplest algebraic relationship between energy eigenstates of a hydrogen atom and a harmonic oscillator of arbitrary dimensions. Phys. Rev. A 50, 4373–4375 (1994)

    Article  CAS  Google Scholar 

  8. Hosoya H.: Back-of-envelope derivation of the analytical formulas of the atomic wave functions of a d-dimensional atom. Int. J. Quantum Chem. 64, 35–42 (1997)

    Article  CAS  Google Scholar 

  9. Carzoli J.C., Dunn M., Watson D.K.: Singly and doubly excited states of the D-dimensional helium atom. Phys. Rev. A 59, 182–187 (1999)

    Article  CAS  Google Scholar 

  10. Nouri S.: Generalized coherent states for the d-dimensional Coulomb problem. Phys. Rev. A 60, 1702–1705 (1999)

    Article  CAS  Google Scholar 

  11. Andrew K., Supplee J.: A hydrogenic atom in d-dimensions. Am. J. Phys. 58, 1177–1183 (1990)

    Article  Google Scholar 

  12. Ehrenfest P.: In what way does it become manifest in the fundamental laws of physics that space has three dimensions?. Proc. Amsterdam Acad. 20, 200–209 (1917)

    Google Scholar 

  13. Nieto M.M.: Existence of bound states in continuous 0 < D < ∞ dimensions. Phys. Lett. A 293, 10–16 (2002)

    Article  CAS  Google Scholar 

  14. Burgbachera F., Lämmerzahlb C., Maciasc A.: Is there a stable hydrogen atom in higher dimensions?. J. Math. Phys. 40, 625–634 (1999)

    Article  Google Scholar 

  15. Zumino B.: Supersymmetry and Kähler manifolds. Phys. Lett. B 87, 203–206 (1979)

    Article  Google Scholar 

  16. Salamon S.: Quaternionic Kähler manifolds. Inventiones Mathematicae 67, 143–171 (1982)

    Article  Google Scholar 

  17. Freed D.S.: Special Kähler manifolds. Commun. Math. Phys. 203, 31–52 (1999)

    Article  Google Scholar 

  18. Bellucci S., Nersessian A.: Note on N = 4 supersymmetric mechanics on Kähler manifolds. Phys. Rev. D 64, 021702 (2001)

    Article  Google Scholar 

  19. Bellucci S., Nersessian A., Yeranyan A.: Quantum mechanics model on a Kähler conifold. Phys. Rev. D 70, 045006 (2004)

    Article  Google Scholar 

  20. Nersessian A., Yeranyan A.: Three-dimensional oscillator and Coulomb systems reduced from Kähler spaces. J. Phys. A: Math. Gen. 37, 2791–2801 (2004)

    Article  Google Scholar 

  21. Van Gorder R.A.: Wave functions and energy spectra for the hydrogenic atom in \({\mathbb{R}^3 \times \mathcal{M}}\) . J. Math. Phys. 51, 122104 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Van Gorder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Gorder, R.A. Schrödinger equations on \({\mathbb{R}^3 \times \mathcal{M}}\) with non-separable potential. J Math Chem 50, 1420–1436 (2012). https://doi.org/10.1007/s10910-012-9981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-9981-1

Keywords

Navigation