Skip to main content
Log in

A new modified embedded 5(4) pair of explicit Runge–Kutta methods for the numerical solution of the Schrödinger equation

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work a new modified embedded 5(4) pair of explicit Runge–Kutta methods is developed for the numerical solution of the Schrödinger equation. We investigate the error of the new pair, based on the error analysis we apply the higher order method to the resonance problem, also we apply the new embedded pair to elastic scattering phase-shift problem. The applications show the efficiency of our new developed embedded pair and the higher order method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Vanden Berghe, H. De Meyer, M. Van Daele, T. Van Hecke, Exponentially fitted Runge-Kutta methods. Comput. Phys. Commun. 123(1–3), 7–15 (1999)

    Article  CAS  Google Scholar 

  2. T.E. Simos, An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115(1), 1–8 (1998)

    Article  CAS  Google Scholar 

  3. T.E. Simos, Exponentially fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18(3–4), 315–332 (2000)

    Article  Google Scholar 

  4. Y. Fang, X. Wu, A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341–351 (2008)

    Article  Google Scholar 

  5. T.E. Simos, J.V. Aguiar, A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  6. K. Tselios, T.E. Simos, Runge-Kutta Methods with Minimal Dispersion and Dissipation for Problems Arising from Computational Acoustics. J. Comput. Appl. Math 175(1), 173–181 (2005)

    Article  Google Scholar 

  7. Z.A. Anastassi, T.E. Simos, An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  8. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  9. D.F. Papadopoulos, T.E. Simos, A new methodology for the construction of optimized Runge-Kutta-Nyström methods. Int. J. Mod. Phys. C. 22(6), 623–634 (2011)

    Article  Google Scholar 

  10. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems. Comput. Phys. Commun. 183(3), 470–479 (2012)

    Article  CAS  Google Scholar 

  11. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  12. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge- Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

    Google Scholar 

  13. T.E. Simos, A fourth algebraic order exponentially-Fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  14. T.E. Simos, Exponentially-Fitted Runge-Kutta-Nyström Method for the Numerical Solution of Initial-Value Problems with Oscillating Solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  15. Ch. Tsitouras, T.E. Simos, Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  16. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  17. Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  18. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  19. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  20. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  21. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  22. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  23. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  24. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  25. Ibraheem Alolyan, T.E. Simos, High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)

    Article  CAS  Google Scholar 

  26. Ibraheem Alolyan, T.E. Simos, Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)

    Article  CAS  Google Scholar 

  27. Ibraheem Alolyan, T.E. Simos, A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 49(3), 711–764 (2011)

    Article  CAS  Google Scholar 

  28. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. (2012). doi:10.1155/2012/420387

  29. Ibraheem Alolyan, T.E. Simos, On eight-step methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 66(2), 473–546 (2011)

    Google Scholar 

  30. Ibraheem Alolyan, T.E. Simos, A family of ten-step methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(9), 1843–1888 (2011)

    Article  CAS  Google Scholar 

  31. Ibraheem Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  32. T.E. Simos, A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(10), 2486–2518 (2011)

    Article  CAS  Google Scholar 

  33. Ibraheem Alolyan, T.E. Simos, A new hybrid two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 50(7), 1861–1881 (2010)

    Article  Google Scholar 

  34. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  35. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  36. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  37. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  38. T.E. Simos, Exponentially And trigonometrically fitted methods for the solution of the Schrödinger equation. Acta. Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  39. J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial Schrodinger equation. Int. J. Quant. Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  40. G. Avdelas, T.E. Simos, J. Vigo-Aguiar, An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation and related periodic initial-value problems. Comput. Phys. Commun. 131(1–2), 52–67 (2000)

    Article  CAS  Google Scholar 

  41. T.E. Simos, J. Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the Schrodinger equation and related problems. Comput. Phys. Commun. 152(3), 274–294 (2003)

    Article  CAS  Google Scholar 

  42. J. Vigo-Aguiar, H. Ramos, A variable-step Numerov method for the numerical solution of the Schrodinger equation. J. Math. Chem. 37(3), 255–262 (2005)

    Article  CAS  Google Scholar 

  43. T.E. Simos, J. Vigo-Aguiar, A symmetric high order method with minimal phase-lag for the numerical solution of the Schrodinger equation. Int. J. Mod. Phys C. 12(7), 1035–1042 (2001)

    Article  Google Scholar 

  44. J. Vigo-Aguiar, H. Ramos, A new eighth-order A-stable method for solving differential systems arising in chemical reactions. J. Math. Chem. 40(1), 71–83 (2006)

    Article  CAS  Google Scholar 

  45. J. Vigo-Aguiar, H. Ramos, Variable stepsize implementation of multistep methods for \(y^{\prime \prime } = f(x, y, y^{\prime })\). J. Comput. Appl. Math. 192(1), 114–131 (2006)

    Article  Google Scholar 

  46. J. Vigo-Aguiar, J. Martin-Vaquero, Exponential fitting BDF algorithms: explicit and implicit 0-stable methods. J. Comput. Appl. Math. 192(1), 100–113 (2006)

    Article  Google Scholar 

  47. J. Vigo-Aguiar, J. Martin-Vaquero, R. Criado, On the stability of exponential fitting BDF algorithms. J. Comput. Appl. Math. 175(1), 183–194 (2005)

    Article  Google Scholar 

  48. H. Van de Vyver, An embedded phase-fitted modified Runge-Kutta method for the numerical integration of the radial Schrödinger equation. Phys. Lett. A 352(4–5), 278–285 (2006)

    Article  Google Scholar 

  49. T.E. Simos, An embedded Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 11(6), 1115–1133 (2000)

    Article  Google Scholar 

  50. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  51. T. Lyche, Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19(1), 65–75 (1972)

    Article  Google Scholar 

  52. J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  Google Scholar 

  53. E. Hairer, S.P. Nørsett, G. Wanner, Solving ordinary differential equations I, nonstiff problems (Springer, Berlin, 1993)

    Google Scholar 

  54. J.M. Franco, RungeCKutta methods adapted to the numerical integration of oscillatory problems. Appl. Numer. Math. 50(3–4), 427–443 (2004)

    Article  Google Scholar 

  55. H. Van de Vyver, Comparison of some special optimized fourth-order RungeCKutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)

    Article  Google Scholar 

  56. Z.A. Anastassi, T.E. Simos, Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482(482–483), 1–240 (2009)

    Article  Google Scholar 

  57. H. Van de Vyver, An embedded 5(4) pair of modified explicit runge-kutta methods for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C. 16(6), 879–894 (2005)

    Article  Google Scholar 

  58. L.Gr Ixaru, G. Vanden Berghe, Exponential fitting, mathematics and his applications (Kluwer Academic Publishers, Dordrecht, 2004)

    Google Scholar 

  59. A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36(2), 113–119 (1985)

    Article  CAS  Google Scholar 

  60. J. Vigo-Aguiar, T.E. Simos, J.M. Ferrandiz, Controlling the error growth in long-term numerical integration of perturbed oscillations in one or several frequencies. Proc. R. Soc. Lond. Seri. A-Math. Phys. Eng. Sci. 460(2), 561–567 (2004)

    Article  Google Scholar 

  61. H. Ramos, J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 23(11), 1378–1381 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to the anonymous referees for their valuable comments and suggestions. This research was partially supported by NSFC (No. 11101357), the foundation of Shangdong Outstanding Young Scientists Award Project (No. BS2010SF031), NSF of Shandong Province (No. ZR2011AL006) and the foundation of Scientific Research Project of Shangdong Universities (No. J11LG69).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zheng, J. & Fang, Y. A new modified embedded 5(4) pair of explicit Runge–Kutta methods for the numerical solution of the Schrödinger equation. J Math Chem 51, 937–953 (2013). https://doi.org/10.1007/s10910-012-0127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0127-2

Keywords

Navigation