Skip to main content
Log in

New optimized explicit modified RKN methods for the numerical solution of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This paper investigates a family of modified Runge-Kutta-Nyström (RKN) methods for the integration of second-order ordinary differential equations with oscillatory solutions. The order conditions for up to order five are presented. Two new optimized explicit four-stage modified RKN methods are derived by nullifying their dispersions and the dissipations in two different ways, respectively. These methods are checked to be of algebraic order five and both are dispersive of order six and dissipative of order five. The stability is examined and the error formulas are analyzed to show that advantages of the new methods compared with some highly efficient integrators from the recent literature. The high accuracy of the second new method is explained by its comparatively small dispersion and dissipation constants. In the integration of the resonance problem and the bound-states problem of the radial Schrödinger equation with the Woods-Saxon potential, the numerical results show the effectiveness and robustness of the new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanden Berghe G., De Meyer H., Van Daele M., Van Hecke T.: Exponentially fitted Runge-Kutta methods. Comput. Phys. Commun. 123(1–3), 7–15 (1999)

    Article  CAS  Google Scholar 

  2. You X., Zhang Y., Zhao J.: Trigonometrically-fitted Scheifele two-step methods for perturbed oscillators. Comput. Phys. Commun. 182(7), 1481–1490 (2011)

    Article  CAS  Google Scholar 

  3. Chen Z., You X., Shi W., Liu Z.: Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems. Comput. Phys. Commun. 183(1), 86–98 (2012)

    Article  CAS  Google Scholar 

  4. Wu X., You X., Shi W., Wang B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181(11), 1873–1887 (2010)

    Article  CAS  Google Scholar 

  5. Alolyan I., Simos T.E.: High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)

    Article  CAS  Google Scholar 

  6. Alolyan I., Simos T.E.: Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)

    Article  CAS  Google Scholar 

  7. Alolyan I., Simos T.E.: A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schröinger equation. J. Math. Chem. 49(3), 711–764 (2011)

    Article  CAS  Google Scholar 

  8. Anastassi Z., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  9. Avdelas G., Simos T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999)

    Article  Google Scholar 

  10. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high order hybrid explicit methods for the numerical solution of the Schrödinger equation, Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  11. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high order hybrid explicit methods for the numerical solution of the Schrödinger equation, Part 2. Development of the generator, optimized generator and numerical results. J. Math. Chem. 29(4), 393–305 (2001)

    Google Scholar 

  12. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  13. Kalogiratou Z., Simos T.E.: Construction of trigonometrically and exponentially fitted Runge- Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  14. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  15. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  16. Kalogiratou Z., Monovasilis T., Simos T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005)

    Article  CAS  Google Scholar 

  17. Konguetsof A.: A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  18. Kosti A.A., Anastassi Z.A., Simos T.E.: Construction of an optimized explicit Runge-Kutta- Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  19. Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems. Comput. Phys. Commun. 183(3), 470–479 (2012)

    Article  CAS  Google Scholar 

  20. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  21. Monovasilis Th., Kalogiratou Z., Monovasilis Th., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  22. Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  23. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  24. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  25. Simos T.E.: Eighth-order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997)

    Article  CAS  Google Scholar 

  26. Simos T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998)

    Article  CAS  Google Scholar 

  27. Simos T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999)

    Article  CAS  Google Scholar 

  28. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  29. Simos T.E.: Stabilization of a four-step exponentially fitted method and its application to the Schrödinger equation. Int. J. Mod. Phys. C 18(3), 315–328 (2007)

    Article  Google Scholar 

  30. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  31. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  32. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  33. Simos T.E.: Exponentially fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  34. Monovasilis T., Simos T.E.: Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  35. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  36. Anastassi Z.A., Simos T.E.: New trigonometrically fitted six-step symmetric methods for the efficient solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 733–752 (2008)

    CAS  Google Scholar 

  37. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  38. Simos T.E.: High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  39. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  40. Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  41. Simos T.E.: P-stability, trigonometric-fitting and the numerical solution of the radial Schrödinger equation. Comput. Phys. Commun. 180(7), 1072–1085 (2009)

    Article  CAS  Google Scholar 

  42. I. Alolyan, T.E. Simos, A new hybrid two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. (2012). doi:10.1007/s10910-012-0008-8

  43. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. (2012). doi:10.1155/2012/420387

  44. Kalogiratou Z., Monovasilis Th., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by exponentially-fitted Runge-Kutta-Nyström methods. Comput. Phys. Commun. 180(2), 167–176 (2009)

    Article  CAS  Google Scholar 

  45. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  46. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  47. Vigo-Aguiar J., Simos T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001)

    Article  Google Scholar 

  48. Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponentially fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  49. Van de Vyver H.: An embedded phase-fitted modified Runge-Kutta method for the numerical integration of the radial Schrödinger equation. Phys. Lett. A 352(4–5), 278–285 (2006)

    Article  CAS  Google Scholar 

  50. Simos T.E., Vigo-Aguiar J.: A new modified Runge-Kutta-Nystrom method with phase-lag of order infinity for the numerical solution of the Schrodinger equation and related problems. Int. J. Mod. Phys. C 11(6), 1195–1208 (2000)

    Article  Google Scholar 

  51. Avdelas G., Simos T.E., Vigo-Aguiar J.: An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation and related periodic initial-value problems. Comput. Phys. Commun. 131(1–2), 52–67 (2000)

    Article  CAS  Google Scholar 

  52. Simos T.E., Vigo-Aguiar J.: Exponentially fitted symplectic integrator. Phys. Rev. E. 67(1), 016701 (2003)

    Article  CAS  Google Scholar 

  53. Vigo-Aguiar J., Natesan S.: A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195–206 (2004)

    Article  Google Scholar 

  54. Vigo-Aguiar J., Ramos H.: Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187–211 (2003)

    Article  Google Scholar 

  55. Simos T.E., Vigo-Aguiar J.: On the construction of efficient methods for second order IVPS with oscillating solution. Int. J. Mod. Phys. C 12(10), 1453–1476 (2001)

    Article  Google Scholar 

  56. Vigo-Aguiar J., Martin-Vaquero J., Criado R.: On the stability of exponential fitting BDF algorithms. J. Comput. Appl. Math. 175(1), 183–194 (2005)

    Article  Google Scholar 

  57. Martin-Vaquero J., Vigo-Aguiar J.: Exponential fitting BDF algorithms: explicit and implicit 0-stable methods. J. Comput. Appl. Math. 192(1), 100–113 (2006)

    Article  Google Scholar 

  58. Vigo-Aguiar J., Simos T.E.: Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quant. Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  59. Vigo-Aguiar J., Simos T.E., Ferrándiz J.M.: Controlling the error growth in long-term numerical integration of perturbed oscillations in one or several frequencies. Proc. R. Soc. Lond. Seri. A-Math. Phys. Eng. Sci. 460(2), 561–567 (2004)

    Article  Google Scholar 

  60. Vigo-Aguiar J., Reboredo J.C., Ramos H.: Topics of contemporary computational mathematics. Int. J. Comput. Math. 89(8), 265–267 (2012)

    Article  Google Scholar 

  61. Vigo-Aguiar J., López-Ramos J.A.: Applications of computational mathematics in science and engineering. Int. J. Comput. Math. 88(9), 1805–1807 (2011)

    Article  Google Scholar 

  62. Vigo-Aguiar J., Berghe G.V.: Advances in Computational and Mathematical Methods in Science and Engineering. J. Comput. Appl. Math. 235(7), 17–45 (2011)

    Google Scholar 

  63. Vigo-Aguiar J., Ramos H.: A numerical ODE solver that preserves the fixed points and their stability. J. Comput. Appl. Math. 235(7), 1856–1867 (2011)

    Article  Google Scholar 

  64. Ranilla J., Quintana-Ori E.S., Vigo-Aguiar J.: High performance computing tools in science and engineering. J. Supercomput. 58(2), 143–144 (2011)

    Article  Google Scholar 

  65. Ramos H., Vigo-Aguiar J.: On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 23(11), 1378–1381 (2010)

    Article  Google Scholar 

  66. Alonso F.G., Reyes J., Ferrándiz J.M., Vigo-Aguiar J.: Multistep numerical methods for the integration of oscillatory problems in several frequencies. Adv. Eng. Soft. 40(8), 543–553 (2009)

    Article  Google Scholar 

  67. Vigo-Aguiar J., Vaquero J.M., Ramos H.: Exponential fitting BDF-Runge-Kutta algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)

    Article  CAS  Google Scholar 

  68. Vaquero J.M., Vigo-Aguiar J.: Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithms 48(4), 327–346 (2008)

    Article  Google Scholar 

  69. Reyes J.A., Alonso F.G., Ferrándiz J.M., Vigo-Aguiar J.: Numeric multistep variable methods for perturbed linear system integration. Appl. Math. Comput. 190(1), 63–79 (2007)

    Article  Google Scholar 

  70. Vigo-Aguiar J., Vaquero J.M.: Exponential fitting BDF algorithms and their properties. Appl. Math. Comput. 190(1), 80–110 (2007)

    Article  Google Scholar 

  71. Vaquero J.M., Vigo-Aguiar J.: Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287–313 (2007)

    Article  Google Scholar 

  72. Hairer E., Nørsett S.P., Wanner S.P.: Solving Ordinary Differential Equations I, Nonstiff Problems. Springer, Berlin (1993)

    Google Scholar 

  73. Vander Houwen P.J., Sommeijer B.P.: Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer. Anal. 24(3), 595–617 (1987)

    Article  Google Scholar 

  74. Vande Vyver H.: An embedded exponentially fitted Runge-Kutta-Nyström method for the numerical solution of orbital problems. New Astron. 11(8), 577–587 (2006)

    Article  Google Scholar 

  75. Vande Vyver H.: A 5(3) pair of explicit Runge-Kutta-Nyström methods for oscillatory problems. Math. Comput. Model. 45(5–6), 708–716 (2007)

    Article  Google Scholar 

  76. Ixaru L.G., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödingere quation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  77. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18(2), 189–202 (1976)

    Article  Google Scholar 

  78. Coleman J.P., Ixaru L.Gr.: P-stability and exponential-fitting methods for y′′ = f(x,y). IMA J. Numer. Anal. 16(2), 179–199 (1996)

    Article  Google Scholar 

  79. Coleman J.P., Duxbury S.C.: Mixed collocation methods for y′′ = f(x,y). J. Comput. Appl. Math. 125(1–2), 47–75 (2000)

    Article  Google Scholar 

  80. Ixaru L.Gr., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19(1), 23–27 (1980)

    Article  Google Scholar 

  81. Vande Vyver H.: Frequency evaluation for exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 184(2), 442–463 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Y., You, X. & Ming, Q. New optimized explicit modified RKN methods for the numerical solution of the Schrödinger equation. J Math Chem 51, 390–411 (2013). https://doi.org/10.1007/s10910-012-0090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0090-y

Keywords

Navigation