Skip to main content
Log in

Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work we present a suitable computational tool to deal with large matrices and solve systems of non-linear equations. This technique is applied to a very interesting problem: the detection and flux estimation of point sources in Cosmic Microwave Background (CMB) maps, which allows a good determination of CMB primordial fluctuations and leads to a better knowledge of the chemistry at the early stages of the Universe. The method uses previous information about the statistical properties of the sources, so that this knowledge is incorporated in a Bayesian scheme. Simulations show that our approach allows the detection of more sources than previous non-Bayesian techniques, with a small computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alonso, D. Argüelles, J. Ranilla, A.M. Vidal, The solution of Block-Toeplitz linear systems of equations in multicore computers. J. Supercomput. (2012). doi:10.1007/s11227-012-0824-4

  2. Alonso P., Argüeso F., Cortina R., Ranilla J., Vidal A.M.: Detecting point sources in CMB maps using an eficient parallel algorithm. J. Math. Chem. 50, 410–420 (2012)

    Article  CAS  Google Scholar 

  3. Argüeso F., Salerno E., Herranz D., Sanz J.L., Kuruoglu E.E., Kayabol K.: A Bayesian technique for the detection of point sources in CMB maps. Mon. Not. Roy. Astron. Soc. 414, 410–417 (2011)

    Article  Google Scholar 

  4. Carvalho P., Rocha G., Hobson M.: A fast Bayesian approach to discrete object detection in astronomical images. PowellSnakes I. Mon. Not. Roy. Astron. Soc. 393, 681 (2009)

    Article  Google Scholar 

  5. Planck Collaboration, P.A.R. Ade et al. Planck early results I. The Planck mission. Astron. Astrophys. 536, A1 (2011)

  6. De Zotti G. et al.: Predictions for high-frequency radio surveys of extragalactic sources. Astron. Astrophys. 431, 893–903 (2005)

    Article  Google Scholar 

  7. Dubrovich V.K.: Blurring of spatial microwave fluctuations by molecular last scattering. Astron. Lett. J. Astron. Space Astrophys. 19, 53 (1993)

    Google Scholar 

  8. Golub G.H., Van Loan C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  9. Herranz D., Vielva P.: Microwave backgound images. IEEE Signal Process. Mag. 27, 67–75 (2010)

    Article  Google Scholar 

  10. D. Herranz, F. Argüeso, P. Carvalho, Compact source detection in multichannel microwave surveys: from SZ clusters to polarized sources. Adv. Astron. (2012). doi:10.1155/2012/410965

  11. Maoli R., Melchiorri F., Tosti D.: Molecules in the postrecombination universe and microwave background anisotropies. Astrophys. J. 425, 372 (1994)

    Article  CAS  Google Scholar 

  12. Nolta M.R. et al.: Five-year wilkinson microwave anisotropy probe (WMAP) observations: angular power spectrum. Astrophys. J. Suppl. 180, 296 (2009)

    Article  Google Scholar 

  13. Penzias A.A., Wilson R.W.: A measurement of excess antenna temperature at 4,080 Mc/s. Astrophys. J. 142, 419–421 (1965)

    Article  Google Scholar 

  14. Schleicher D.R.G. et al.: Effects of primordial chemistry on the cosmic microwave background. Astron. Astrophys. 490, 521 (2008)

    Article  CAS  Google Scholar 

  15. Smoot G. et al.: Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1–L5 (1992)

    Article  Google Scholar 

  16. Spergel D.N. et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)

    Article  Google Scholar 

  17. StructPack: a high performance PACKage for STRUCTred Matrices. http://www.inco2.upv.es/structpack.html

  18. Wax M., Kailath T.: Efficient inversion of Toeplitz-block Toeplitz matrix. IEEE T. Acoust. Speech. 31, 5 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ranilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, P., Argüeso, F., Cortina, R. et al. Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques. J Math Chem 51, 1153–1163 (2013). https://doi.org/10.1007/s10910-012-0078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0078-7

Keywords

Navigation