Skip to main content
Log in

Topological model to quantify the global reactivity indexes as local in Diels–Alder reactions, using density function theory (DFT) and local quantum similarity (LQS)

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this study is presented a Topological model for quantify the global reactivity indexes as local in Diels–Alder Reactions. Using conceptual density functional theory (DFT) and molecular quantum similarity (MQS), by means of six local similarity indexes: Overlap, Overlap-Interaction, Coulomb, Coulomb-Interaction, with their respective Euclidean distances. Using the Topo-Geometrical Superposition Approach (Topo-Geometrical superposition Algorithm) as method of alignment. This allowed us to obtain good results in local similarity indexes. This methodology proved to be an appropriate technique for the intended purpose, found that values of local electrophilic and hardness calculated are in agreement with the theoretical and experimental mechanism of cycloaddition considered here in this work. In addition chemical potential of Overlap and Coulomb proposed reproduce the trend of the values of the Fukui function (F) of atom C6 in the dihydrofuran derivatives present in the cycloaddition reaction considered. Taking into account that the C6 carbon atom is responsible for the preferred stereochemistry, this evidence allowed us propose this methodology as alternative way to determining of local reactivity indexes using MQS based on the Hirshfeld partitioning. In addition in this contribution was postulated a new perspectives in the chemical reactivity field such as chemical potential, hardness and electrophilicity relative, alternatives to the traditional (chemical potential, hardness and electrophilicity) proposed in the conceptual DFT which allowed us to relate the local reactivity indexes proposed with the global considering that the pursuit of local descriptors of reactivity supported on ideas of MQS in Cycloaddition Reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carruthers W.: Some Modern Methods of Organic Synthesis. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  2. W. Carruthers, Cycloaddition Reactions in Organic Synthesis (Pergamon, Oxford, 1990)

  3. Diels O., Alder K.: Justus Liebigs Ann. Chem. 460, 98 (1928)

    Article  CAS  Google Scholar 

  4. Fukui K.: Molecular Orbitals in Chemistry. Physics and Biology, New York (1964)

    Google Scholar 

  5. Eyring H., Polanyi M.Z.: Phys. Chem. Abt. B 12, 279 (1931)

    CAS  Google Scholar 

  6. Eyring H.: Chem. Rev. 17, 65 (1935)

    Article  CAS  Google Scholar 

  7. Laidler K.J., C. King M.: J. Phys. Chem. 87, 2657 (1983)

    Article  CAS  Google Scholar 

  8. Ess D.H., Jones G.O., Houk K.N.: Adv. Synth. Catal. 348, 2337 (2006)

    Article  CAS  Google Scholar 

  9. Omar N.Y.M., Rahman N.A., Zain S.M.: Bull. Chem. Soc. Jpn. 84, 196 (2011)

    Article  CAS  Google Scholar 

  10. L.R. Domingo, M.T. Picher, P. Arroyo, 2006:2570 (2006). doi:10.1002/ejoc.200500978

  11. Berski S., Andrés J., Silvi B., Domingo L.R.: J. Phys. Chem. A 110, 13939 (2006)

    Article  CAS  Google Scholar 

  12. Cioslowski J.: J. Am. Chem. Soc. 113, 6756 (1991)

    Article  CAS  Google Scholar 

  13. Domingo L.R, Aurell M.J.: J. Org. Chem. 67, 959 (2002)

    Article  CAS  Google Scholar 

  14. Chen C.H., Rao P.D., Liao C.C.: J. Am. Chem. Soc. 120, 13254 (1998)

    Article  CAS  Google Scholar 

  15. Carbó R., Arnau M., Leyda L.: J. Quant. Chem. 17, 1185 (1980)

    Article  Google Scholar 

  16. Carbó:Dorca R., Mercado L.D.: J. Com. Chem. 310, 2195 (2010)

    Article  Google Scholar 

  17. Gironés X., Carbó:Dorca R.: QSAR Combinator. Sci. 25, 579 (2006)

    Article  Google Scholar 

  18. Carbó-Dorca R., Besalú E., Mercado L.D.: J. Com. Chem. 32, 582 (2011)

    Article  Google Scholar 

  19. Carbó-Dorca R., Gironés X.: Int. J. Quantum Chem. 101, 8 (2005)

    Article  Google Scholar 

  20. Carbó-Dorca R., Besalú E.: J. Comp. Chem. 31, 2452 (2010)

    Article  Google Scholar 

  21. Amat L., Carbó-Dorca R.: Int. J. Quantum Chem. 87, 59 (2002)

    Article  CAS  Google Scholar 

  22. Carbó-Dorca R., Gironés X.: Int. J. Quantum Chem. 101, 8 (2005)

    Article  Google Scholar 

  23. Bultinck P., Gironés X., Carbó-Dorca R.: Rev. Comput. Chem. 21, 127 (2005)

    Article  CAS  Google Scholar 

  24. Parr R.G., Yang W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989)

    Google Scholar 

  25. P. Geerlings, F. De Proft, W. Langenaeker, Conceptual Density Functional Theory. Chem. Rev. 103, 1793 (2003)

  26. Koch W., Holthausen M.C.: AChemist’s Guide to Density Functional Theory, 2nd ed. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  27. Parr R.G., Yang W.: Annu. Rev. Phys. Chem. 46, 701 (1995)

    Article  CAS  Google Scholar 

  28. Chermette H.: J. Comp. Chem. 20, 129 (1999)

    Article  CAS  Google Scholar 

  29. Geerlings P., De Proft F.: Int. J. Quant. Chem. 80, 225 (2000)

    Article  Google Scholar 

  30. R.G. Parr, W. Yang, Annu. Rev. Phys. Chem.

  31. Vivas-Reyes R., De Proft F., Biesemans M., Willem R., Ribot F., Sanchez C., Geerlings P.: New J. Chem. 26, 1108 (2002)

    Article  CAS  Google Scholar 

  32. R. Mejia-Urueta, F. Núñez-Zarur R. Vivas-Reyes, Int. J. Quantum Chem. 112, 2808 (2012). doi:10.1002/qua.24008

    Google Scholar 

  33. De Proft F., Vivas-Reyes R., Biesemans M., Willem R., Martin JML, Geerlings P.: Eur. J. Inorg. Chem. 20(3803), 3810 (2003)

    Google Scholar 

  34. Vivas-Reyes R., De Proft F., Biesemans M., Willem R., Geerlings P.: Eur. J. Inorg. Chem. 7, 1315 (2003)

    Article  Google Scholar 

  35. Morales-Bayuelo A., Ayazo H., Vivas-Reyes R.E.: J. Med. Chem. 10, 4509 (2010)

    Google Scholar 

  36. Constans P., Amat L., Carbó-Dorca R.: J. Comput. Chem. 18, 826 (1997)

    Article  CAS  Google Scholar 

  37. Girones X., Robert D., Carbó-Dorca R.: J. Comput. Chem. 22, 255 (2010)

    Article  Google Scholar 

  38. L. Chen, in Computational Medicinal Chemistry for Drug Discovery, vol. 483 ed. by P. Bultinck, H. De Winter, W. Langenaeker, J.P. Tollenaere (Dekker Inc., New York, 2003)

  39. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzew ski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.S. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, A.G. Stefanov, A.G. Liu, A.G. Liashenko, A.G. Piskorz, A.G. Komaromi, A.G. Gomperts, A.G. Martin, A.G. Fox, A.G. Keith, A.G. Al-Laham, A.G. Peng, A.G. Nanayakkara, A.G. Gonzalez, A.G. Challacombe, A.G. Gill, A.G. Johnson, A.G. Chen, A.G. Wong, A.G. Andres, A.G. Head-Gordon, A.G. Replogle, A.G. Pople, Gaussian 98 (Gaussian Inc, Pittsburgh, PA, 1998)

  40. Becke A.D.: J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  41. Lee C., Yang W., Parr R.G.: Phys. Rev. B. 37, 785 (1988)

    Article  CAS  Google Scholar 

  42. Pople D.L., Beveridge J.A.: Approximate Molecular Orbital Theory. McGraw Hill, New York (1970)

    Google Scholar 

  43. D.A. Zhurko, Web programming: Alexander Romanov. (2011) http://www.chemcraftprog.com

  44. Parr R.G., von Szentpaly L., Liu S.: J. Am. Chem. Soc. 121, 1922 (1999)

    Article  CAS  Google Scholar 

  45. Parr R.G., Pearson R.G.: J. Am. Chem. Soc. 105, 7512 (1983)

    Article  CAS  Google Scholar 

  46. Mulliken R.S.: J. Chem. Phys. 23, 1833 (1955)

    Article  CAS  Google Scholar 

  47. Yonezawa Y., Shingu H., Fukui K.: J. Chem. Phys. 20, 722 (1952)

    Article  Google Scholar 

  48. Fukui K.: Science 217, 747 (1982)

    Article  Google Scholar 

  49. McLean A.D., Chandler G.S.: J. Chem. Phys. 72, 5639 (1980)

    Article  CAS  Google Scholar 

  50. Besalú E., Gironés X., Amat L., Carbó-Dorca R.: Acc. Chem. Res. 35, 289 (2002)

    Article  Google Scholar 

  51. Ponec R., Amat L., Carbó-Dorca R.: J. Phys. Org. Chem. 12, 447 (1999)

    Article  CAS  Google Scholar 

  52. Amat L., Besalú E., Carbó-Dorca R., Ponec R.: J. Chem. Inf. Comp. Sci. 41, 978 (2001)

    Article  CAS  Google Scholar 

  53. Gironés X., Carbó-Dorca R., Ponec R.: J. Chem. Int. Comp. Sci. 43, 2033 (2003)

    Article  Google Scholar 

  54. Hirshfeld F.L.: Theor. Chim. Acta. 44, 129 (1997)

    Article  Google Scholar 

  55. De Proft F., Van Alsenoy C., Peeters A., Langenaeker W., Geerlings P.: J. Comput. Chem. 23, 1198 (2002)

    Article  CAS  Google Scholar 

  56. De Proft F., Vivas-Reyes R., Peeters A., Van Alsenoy C., Geerlings P.: J. Comput. Chem. 24, 463 (2003)

    Article  CAS  Google Scholar 

  57. Girones X., Robert D., Carbó-Dorca R.: J. Comput. Chem. 22, 255 (2001)

    Article  CAS  Google Scholar 

  58. C.H. Chen, P.D. Rao, C.C. Liao, J. Am. Chem. Soc. 120:13254 (1998)

    Google Scholar 

  59. Domingo L.R., Picher M.T., Aurell M.J.: J. Phys. Chem. A. 117, 425–435 (1999)

    Google Scholar 

  60. Molecular Similarity II. Topics in Current Chemistry. 174:1 (1995)

    Google Scholar 

  61. Polansky O.E., Derflinger G.: Int. J. Quant. Chem. 1, 379 (1967)

    Article  CAS  Google Scholar 

  62. Clar E.: The Aromatic Sextet. Wiley, London (1972)

    Google Scholar 

  63. Ponec R., Strnad M.: Chem. Inf. Comput. Sci. 32, 693 (1992)

    Article  CAS  Google Scholar 

  64. Ponec R., Strnad M.: J. Phys. Organ. Chem. 5, 764 (1992)

    Article  CAS  Google Scholar 

  65. Ponec R.: J. Chem. Inf. Comput. Sci. 33, 805 (1993)

    Article  CAS  Google Scholar 

  66. Yang W.T., Parr R.G., Pucci R.: J. Chem Phys. 81, 2862 (1984)

    Article  CAS  Google Scholar 

  67. Bultinck P., Carbó-Dorca R.: J. Chem. Sci. 117, 425–435 (2005)

    Article  CAS  Google Scholar 

  68. P. Hohenberg, W. Kohn, Phys. Rev. B 136:864 (1964). For a recent perspective, see: M. Ernzerhof, G.E. Scuseria, Theor. Chem. Acc. 103:259 (2000)

  69. Bultinck P., Fias S., van sAlsenoy C., Ayers P.W., Carbó-Dorca R.: J. Chem. Phys. 127, 034102 (2007)

    Article  Google Scholar 

  70. Huisgen R., Grashey R., Sauer J.: The Chemistry of Alkenes. Interscience, New York (1964)

    Google Scholar 

  71. Caramella P., Cellerino G., Corsico A., Gamba A., Grunanger P., Houk K.N., Marinone F.: J. Org. Chem. 41, 3349 (1976)

    Article  CAS  Google Scholar 

  72. Huisgen R.: J. Org. Chem. 33, 2291 (1968)

    Article  Google Scholar 

  73. Firestone R.A.: J. Org. Chem. 33, 2285 (1968)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Vivas-Reyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Bayuelo, A., Vivas-Reyes, R. Topological model to quantify the global reactivity indexes as local in Diels–Alder reactions, using density function theory (DFT) and local quantum similarity (LQS). J Math Chem 51, 125–143 (2013). https://doi.org/10.1007/s10910-012-0069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0069-8

Keywords

Navigation