Skip to main content
Log in

New open modified trigonometrically-fitted Newton-Cotes type multilayer symplectic integrators for the numerical solution of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we present new modified open Newton Cotes integrators and we develop a new modified trigonometrically-fitted open Newton-Cotes method. We study the connection between the new proposed schemes, the differential methods and the symplectic integrators. although The research on multistep symplectic integrators is very poor, although, much research has been done on one step symplectic integrators and several of then have obtained based on symplectic geometry. In this paper a new open modified numerical algorithm of Newton-Cotes type is produced. We present the new obtained method as symplectic multilayer integrator. The new obtained symplectic schemes are applied for the solution of the resonance problem of the radial Schrödinger Equation. The results show the efficiency of the new proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van de Vyver H.: Phase-fitted and amplification-fitted two-step hybrid methods for y′′ =  f(x, y). J. Comput. Appl. Math. 209(1), 33–53 (2007)

    Article  Google Scholar 

  2. Van de Vyver H.: An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53, 1339–1348 (2007)

    Article  Google Scholar 

  3. Van de Vyver H.: A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

    Article  Google Scholar 

  4. Tang C., Wang W., Yan H., Chen Z.: High-order predictorcorrector of exponential fitting for the N-body problems. J. Comput. Phys. 214(2), 505–520 (2006)

    Article  CAS  Google Scholar 

  5. Ixaru L.G., Micu M.: Topics in Theoretical Physics. Central Institute of Physics, Bucharest (1978)

    Google Scholar 

  6. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  7. Prigogine, I., Rice, S. (eds): Advances in Chemical Physics Vol. 93: New Methods in Computational Quantum Mechanics. Wiley, London (1997)

    Google Scholar 

  8. Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)

    Google Scholar 

  9. Dormand J.R., El-Mikkawy M.E.A., Prince P.J.: Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  10. Dormand J.R., Prince P.J.: A family of embedded RungeKutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  11. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  12. Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  13. Kalogiratou Z., Simos T.E.: Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  14. Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  15. Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  16. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  17. Quinlan G.D., Tremaine S.: Astron. J. 100(5), 1694–1700 (1990)

    Article  Google Scholar 

  18. http://burtleburtle.net/bob/math/multistep.html

  19. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  20. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part. 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  21. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  22. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  23. Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  24. Alolyan I., Simos T.E.: High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)

    Article  CAS  Google Scholar 

  25. Alolyan I., Simos T.E.: Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)

    Article  CAS  Google Scholar 

  26. Alolyan I., Simos T.E.: A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrd̈inger equation. J. Math. Chem. 49(3), 711–764 (2011)

    Article  CAS  Google Scholar 

  27. Konguetsof A.: A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  28. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  29. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  30. Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  31. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  32. Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  33. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  34. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  35. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  36. Simos T.E.: High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  37. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  38. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  39. Simos T.E.: High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

    Article  CAS  Google Scholar 

  40. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  41. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. RevMexAA 42(2), 167–177 (2006)

    Google Scholar 

  42. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys. C 14(8), 1061–1074 (2003)

    Article  Google Scholar 

  43. T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem. Phys. 133(10):104108 (2010)

    Google Scholar 

  44. Vanden Berghe G., Van Daele M.: Exponentially fitted open NewtonCotes differential methods as multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010)

    Article  Google Scholar 

  45. Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted partitioned Runge-Kutta method. In: International Conference on Numerical Analysis and Applied Mathematics, SEP 16–20, 2007 Corfu, GREECE, Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 936, pp. 313–317 (2007)

  46. Monovasilis T., Kalogiratou Z., Simos T.E.: Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)

    Article  CAS  Google Scholar 

  47. Monovasilis T., Simos T.E.: Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  48. Monovasilis T., Kalogiratou Z., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)

    Article  CAS  Google Scholar 

  49. Monovasilis T., Kalogiratou Z., Simos T.E.: Symplectic partitioned Runge-Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

    Article  CAS  Google Scholar 

  50. Ixaru L.G., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  51. Vigo-Aguiar J., Simos T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Article  CAS  Google Scholar 

  52. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  53. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  54. Simos T.E.: Exponentially-fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  55. Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  56. Simos T.E.: A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Article  Google Scholar 

  57. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  58. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  59. Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  60. Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  CAS  Google Scholar 

  61. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  62. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  63. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  64. Anastassi Z.A., Simos T.E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482, 1–240 (2009)

    Article  Google Scholar 

  65. Vujasin R., Sencanski M., Radic-Peric J., Peric M.: A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363–378 (2010)

    CAS  Google Scholar 

  66. Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  67. Ixaru L.G., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  68. Vigo-Aguiar J., Simos T.E.: Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  69. Sanz-Serna J.M., Calvo M.P.: Numerical Hamiltonian Problem. Chapman & Hall, London (1994)

    Google Scholar 

  70. Zhu W., Zhao X., Tang Y.: Numerical methods with a high order of accuracy in the quantum system. J. Chem. Phys. 104, 2275–2286 (1996)

    Article  CAS  Google Scholar 

  71. Chiou J.C., Wu S.D.: Open Newton-Cotes differential methods as multilayer symplectic integrators. J. Chem. Phys. 107, 6894–6897 (1997)

    Article  CAS  Google Scholar 

  72. Ujevic’ N., Roberts R.J.: A corrected quadrature formula and applications. ANZIAM J. 45(E), E41–E56 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

Highly Cited Researcher (http://isihighlycited.com/), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences Corresponding Member of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alolyan, I., Simos, T.E. New open modified trigonometrically-fitted Newton-Cotes type multilayer symplectic integrators for the numerical solution of the Schrödinger equation. J Math Chem 50, 782–804 (2012). https://doi.org/10.1007/s10910-011-9924-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9924-2

Keywords

Navigation