Skip to main content
Log in

Internal and external eigenvalue problems of Hermitian operators and their use in electronic structure theory

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Within the fragment resolution of molecular systems the conceptual and interpretative advantages of using the separate eigenvalue problems for the internal and external part of the Hermitian matrix representing a physical quantity in quantum mechanics are examined. By definition, these two parts accordingly combine only the diagonal and off-diagonal subsystem-resolved blocks of matrix elements. These two partial eigenvalue problems bring about the matrix internal or external decouplings, respectively, which have recently been used in several interpretations of the molecular electronic structure. A character and structure of the external eigensolutions is examined in some detail and their recent applications in the Charge Sensitivity Analysis—to extract the most important electron-transfer effects between constituent atoms of model chemisorption systems, and in the Molecular-Orbital theory—to precisely identify the inter-orbital flows of electrons, are summarized and commented upon. The grouping relation, for combining the external/internal eigensolutions into those for the whole matrix, is derived in the context of the complementary “rotations” of the basis set vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-O. Löwdin, J. Chem. Phys. 19, 1396 (1951); P.-O. Löwdin, J. Math. Phys. 3, 969 (1962); P.-O. Löwdin, J. Mol. Spectr. 10, 12 (1963)

    Google Scholar 

  2. R.F. Nalewajski, J. Korchowiec, Charge Sensitivity Approach to Electronic Structure and Chemical Reactivity (World-Scientific, Singapore, 1997) and refs. therein.

  3. R.F. Nalewajski, J. Korchowiec, A. Michalak, Top. Curr. Chem. 183, 25 (1996); R.F. Nalewajski, J. Korchowiec, A. Michalak, Proc. Indian. Acad. Sci. (Chemical Sci.) 106, 353 (1994)

  4. R.F. Nalewajski, Struct. Bonding 80, 115 (1993); R.F. Nalewajski, J. Korchowiec, J. Mol. Catal. 54, 324 (1989)

    Google Scholar 

  5. R.F. Nalewajski, J. Korchowiec, Z. Zhou, Int. J. Quantum Chem. Symp. 22, 349 (1988); R.F. Nalewajski, Int. J. Quantum Chem. 40, 265 (1991); 43, 443 (1992) (Erratum)

  6. Nalewajski R.F. (2006). Adv. Quant. Chem. 51: 235

    Article  CAS  Google Scholar 

  7. M. Mitoraj, A. Michalak, J. Mol. Model. 11, 341 (2005); M. Mitoraj, Ph.D. Thesis, Jagiellonian University, 2007; M. Mitoraj, A. Michalak, J. Mol. Model. 13, 347 (2007)

  8. M. Mitoraj, H. Zhu, A. Michalak, T. Ziegler, J. Org. Chem. 71, 9208 (2006); M. Mitoraj, H. Zhu, A. Michalak, T. Ziegler, Organometallics 26, 1627 (2007)

    Google Scholar 

  9. Nalewajski R.F., Mrozek J. and Michalak A. (1997). Int. J. Quantum Chem. 61: 589

    Article  CAS  Google Scholar 

  10. McWeeny R. (1989). Methods of Molecular Quantum Mechanics. Academic Press, San Diego

    Google Scholar 

  11. Bochevarov A.D. and Sherrill C.D. (2007). J. Math. Chem. 42: 59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman F. Nalewajski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalewajski, R.F. Internal and external eigenvalue problems of Hermitian operators and their use in electronic structure theory. J Math Chem 44, 802–815 (2008). https://doi.org/10.1007/s10910-007-9342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-007-9342-7

Keywords

Navigation