Skip to main content
Log in

Mathematical modeling of an NMR chemistry problem in ovarian cancer diagnostics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We use mathematical modeling via the fast Padé transform (FPT) with respect to a theoretically-designed problem based on time signals that are similar to NMR data as encoded from benign and malignant ovarian cyst fluid. The FPT reconstructed exactly all the input spectral parameters by using exceedingly small fractions of the full time signals both for those corresponding to the benign, as well as to the malignant case. The converged parametric results remained stable thereafter at longer signal lengths. The Padé absorption spectra yielded clear resolution of all the extracted physical metabolites. The capacity of the FPT to resolve and precisely quantify the physical resonances as encountered in benign versus malignant ovarian cystic fluid is demonstrated. The practical significance of such findings is enhanced by the avoidance of the time signals’ exponential tail which is embedded in the background, leading to problems in quantification. Without any fitting or numerical integration of peak areas, the FPT reliably yields the metabolite concentrations of major importance for distinguishing benign from malignant ovarian lesions. Thus, the FPT provides distinct advantages relative to the standard Fourier methodology, which is also stable, but has a number of drawbacks. These include limited resolution capacity, as well as non-parametric estimation, so that only a shape spectrum is generated and post-processing is necessary via, e.g., fitting or numerical integrations which are not unique. The FPT is also distinguished from other competitive parametric methods, which are generally unstable as a function of signal length N at a fixed bandwidth and, therefore, particularly unsuitable to clinical data. We conclude that these advantages of the FPT could be of definite benefit for ovarian cancer diagnostics via NMR and that this line of investigation should continue with encoded data from benign and malignant ovarian tissue, in vitro and in vivo. This avenue is of clinical urgency for early ovarian cancer detection, a goal which is still elusive and achievement of which would confer a major survival benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ala:

Alanine

au:

Arbitrary units

Cho:

Choline

COSY:

2 dimensional correlated spectroscopy

Cr:

Creatine

Crn:

Creatinine

C met :

Metabolite concentration

C ref :

Reference concentration

CT:

Computerized tomography

DFT:

Discrete Fourier transform

DLP:

Decimated linear predictor

DPA:

Decimated Padé approximant

DSD:

Decimated signal diagonalization

FFT:

Fast Fourier transform

FID:

Free induction decay

FPT:

Fast Padé transform

Glc:

Glucose

Gln:

Glutamine

Iso:

Isoleucine

HLSVD:

Hankel-Lanczos Singular Value Decomposition

Lac:

Lactate

Lys:

Lysine

Met:

Methionine

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MRSI:

Magnetic resonance spectroscopic imaging

NMR:

Nuclear magnetic resonance

PA:

Padé approximant

PLCO Trial:

Prostate, Lung, Colorectal and Ovarian Trial

ppm:

Parts per million

SCS:

Statistical classification strategy

SNR:

Signal-to-noise ratio

ST:

Shanks transform

Thr:

Threonine

TVUS:

Transvaginal ultrasound

Val:

Valine

References

  1. Dž. Belkić, K. Belkić J. Math. Chem. in press, (2007)

  2. Belkić Dž. (2004) Quantum mechanical signal processing and spectral analysis. Institute of Physics Publishing: Bristol, UK

    Google Scholar 

  3. Belkić Dž., Belkić K. (2005) Phys. Med. Biol. 50: 4385

    Article  CAS  Google Scholar 

  4. Bottomley P.A. (1992) . J. Magn. Reson. Imaging 2: 1

    Article  CAS  Google Scholar 

  5. Cho Y.-D., Choi G.-H., Lee S.-P., Kim J.-K. (2003) . Magn. Reson. Imaging 21: 663

    Article  Google Scholar 

  6. Opstad K.S., Provencher S.W., Bell B.A., Griffiths J.R., Howe F.A., (2003) . Magn. Reson. Med. 49: 632

    Article  CAS  Google Scholar 

  7. Dž. Belkić, Nucl. Instrum. Methods Phys. Res. A 525, 366 (2004)

  8. Pijnappel W.W.F., van den Boogaart A., De Beer R., van Ormondt D. (1992) . J. Magn. Reson. 97: 122

    Google Scholar 

  9. Belkić Dž. (2004) . Nucl. Instrum. Methods Phys. Res. A 525: 372

    Article  CAS  Google Scholar 

  10. Belkić Dž. (2006) . Phys. Med. Biol. 51: 2633

    Article  CAS  Google Scholar 

  11. Belkić Dž. (2006) . Phys. Med. Biol. 51: 6483

    Article  Google Scholar 

  12. Belkić Dž. (2006) . Adv. Quant. Chem. 51: 157

    Article  CAS  Google Scholar 

  13. Belkić Dž., Dando P.A., Taylor H.S. (1999) . J. Main, Chem. Phys. Lett. 315: 135

    Article  Google Scholar 

  14. Belkić Dž., Dando P.A., Main J., Taylor H.S. (2000) . J. Chem. Phys. 113: 6542

    Article  Google Scholar 

  15. Belkić Dž., Dando P.A., Taylor H.S., Main J., Shin S-K. (2000) . J. Phys. Chem. A 104: 11677

    Article  CAS  Google Scholar 

  16. Deschamps M., Burghardt I., Derouet C., Bodenhausen G., Belkić Dž. (2000) J. Chem. Phys. 113: 1630

    Article  CAS  Google Scholar 

  17. Main J., Dando P.A., Belkić Dž., Taylor H.S. (1999) . Europhys. Lett. 48: 250

    Article  CAS  Google Scholar 

  18. Main J., Dando P.A., Belkić Dž., Taylor H.S. (2000) . J. Phys. A 33: 1247

    Article  Google Scholar 

  19. PfeufferJ., Tkáč I., Provencher S.W., Gruetter R. (1999) . J. Magn. Reson. 141: 104

    Article  Google Scholar 

  20. Belkić Dž. (2004) . Nucl. Instrum. Methods Phys. Res. A 525: 379

    Article  CAS  Google Scholar 

  21. BelkićDž., Belkić K. (2005) . Int. J. Quantum Chem. 105: 493

    Article  CAS  Google Scholar 

  22. Pecorelli S., Favalli G., Zigliani L., Odicino F. (2003) . Int. J. Gynaecol. Obstet. 82: 369

    Article  CAS  Google Scholar 

  23. Brewer M.A., Johnson K., Follen M., Gershenson D., Bast R. (2003) . Clin. Cancer Res 9: 20

    CAS  Google Scholar 

  24. Runnebaum I.B., Stickeler E. (2001) . J. Cancer Res. Clin. Oncol. 127: 73

    Article  CAS  Google Scholar 

  25. Fields M.M., Chevlen E. (2006) . Clin. J. Oncol. Nurs. 10: 77

    Article  Google Scholar 

  26. Bhoola S., Hoskins W.J. (2006) . Obstet. Gynecol. 107: 1399

    Google Scholar 

  27. Einhorn N., Bast R., Knapp R., Nilsson B., Zurawski V., Sjövall K. (2000) . Gynecol. Oncol. 79: 466

    Article  CAS  Google Scholar 

  28. Belkić K. (2004) Molecular imaging through magnetic resonance for clinical oncology. Cambridge International Science Publishing, Cambridge, UK

    Google Scholar 

  29. Duffy M.J., Bonfrer J.M., Kulpa J., Rustin G.J., Soletormos G., Torre G.C., et al. (2005) . Int. J. Gynecol. Cancer 15: 679

    Article  CAS  Google Scholar 

  30. Garner E.I.O. (2005) . J. Reprod. Med. 50: 447

    Google Scholar 

  31. Kong F., Nicole White C., Xiao X., Feng Y., Xu C., He D., et al. (2006) . Gynecol. Oncol. 100: 247

    Article  CAS  Google Scholar 

  32. Liu Y. (2006) . Technol. Cancer Res. Treat. 5: 61

    Google Scholar 

  33. Mor G., Visintin I., Lai Y., Zhao H., Schwartz P., Rutherford T., et al. (2005) . Proc. Natl. Acad. Sci. USA 102: 7677

    Article  CAS  Google Scholar 

  34. Rapkiewicz A.V., Espina V., Petricoin E.F., Liotta L.A. (2004) . Eur. J. Cancer 40: 2604

    Article  CAS  Google Scholar 

  35. Ransohoff D.F. (2005) . J. Natl. Cancer Inst. 97: 315

    Article  CAS  Google Scholar 

  36. Buys S.S., Partridge E., Greene M.H., Prorok P.C., Reding D., Riley T.L. et al. (2005) . Am. J. Obstet. Gynecol. 193: 1630

    Article  Google Scholar 

  37. Taylor K.L., Shelby R., Gelmann E., McGuire C. (2004) . J. Natl. Cancer Inst. 96: 1083

    Article  Google Scholar 

  38. U.S. Preventive Services Task Force, Ann. Fam. Med. 2, 260 (2004)

    Google Scholar 

  39. Imaoka I., Wada A., Kaji Y., Hayashi T., Hayashi M., Matsuo M., Sugimura K. (2006) . Radiographics 26: 1431

    Article  Google Scholar 

  40. Spencer J.A. (2005) . Br. J. Radiol. 78: S94

    Article  Google Scholar 

  41. Kinkel K., Lu Y., Mehdizade A., Pelte M-F., Hricak H. (2005) . Radiology 236: 85

    Article  Google Scholar 

  42. Harlap S., Olson S.H., Barakat R.R., Caputo T.A., Forment S S., Jacobs A.J., et al. (2002) . Ann. Epidemiol. 12: 426

    Article  Google Scholar 

  43. Hill D.A., Preston-Martin S., Ross R.K., Bernstein L. (2002) . Cancer Causes Control 13: 711

    Article  Google Scholar 

  44. Brandão L.A., Domingues R.C. (2004) MR spectroscopy of the brain. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  45. Cho S.W., Cho S.G., Lee J.H., Kim H.-J., Lim M.H., Kim J.H., Suh C.H. (2002) . Korean J. Radiol. 3: 105

    Article  Google Scholar 

  46. Hascalik S., Celik O., Erdem G. (2005) . Int. J. Gynecol. Obstet. 90: 152

    Article  CAS  Google Scholar 

  47. Hascalik S., Celik O., Sarak K., Meydanli M.M., Alkan A., Mizrak B. (2005) . Gynecol. Obstet. Invest. 60: 121

    CAS  Google Scholar 

  48. Okada T., Harada M., Matsuzaki K., Nishitani H., Aono T.J. (2001) . Magn. Reson. Imaging 13: 912

    Article  CAS  Google Scholar 

  49. Smith I.C., Blandford D.E. (1998) . Biochem. Cell. Biol. 76: 472

    Article  CAS  Google Scholar 

  50. Wallace J.C., Raaphorst G.P., Somorjai R.L., Ng C.E., Fung Kee Fung M., Senterman M., Smith I.C. (1997) . Magn. Reson. Med. 38: 569

    Article  CAS  Google Scholar 

  51. Massuger L.F.A.G., van Vierzen P.B.J., Engelke U., Heerschap A., Wevers R. (1998) . Cancer 82: 1726

    Article  CAS  Google Scholar 

  52. Boss E.A., Moolenaar S.H., Massuger L.F., Boonstra H., Engelke U.F., de Jong J.G., Wevers R.A. (2000) . NMR Biomed. 13: 297

    Article  CAS  Google Scholar 

  53. Mountford C.E., Doran S., Lean C.L., Russell P.L. (2004) . Chem. Rev. 104: 3677

    Article  CAS  Google Scholar 

  54. Gluch L. (2005) . ANZ. J. Surg. 75: 464

    Article  Google Scholar 

  55. Nicholson J.K., Wilson I.D. (1989) . Prog. NMR Spectrosc. 21: 1245

    Google Scholar 

  56. K. Belkić, Nucl. Instrum. Methods Phys. Res. A, in press, (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dževad Belkić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belkić, D., Belkić, K. Mathematical modeling of an NMR chemistry problem in ovarian cancer diagnostics. J Math Chem 43, 395–425 (2008). https://doi.org/10.1007/s10910-007-9279-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-007-9279-x

Keywords

Navigation