Skip to main content
Log in

How the fast Padé transform handles noise for MRS data from the ovary: importance for ovarian cancer diagnostics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Advanced signal processing through the fast Padé transform (FPT) can enhance resolution and generates quantitative metabolic information for magnetic resonance spectroscopy (MRS). Herein, we apply both \(\hbox {FPT}^{(\pm )}\) variants to in vitro MRS data as encoded from benign and malignant ovarian cyst fluid and perform detailed analysis with several noise levels. In the presence of higher background noise, all genuine metabolites were unambiguously identified and their concentrations precisely computed, using small fractions of the total signal length by both FPT variants. In the \(\hbox {FPT}^{(-)}\), signal–noise separation was accomplished with the help of the “Stability test”, whereby the non-physical information is binned and denoised spectra are generated. In the \(\hbox {FPT}^{(+)}\) even more stringent signal–noise separation was achieved: the spurious resonances reside exclusively in the negative imaginary frequency domain, whereas the genuine content is all in the positive imaginary frequency region. Pole-zero coincidence of spurious resonance remained complete in the \(\hbox {FPT}^{(+)}\) even at higher noise levels. Via the \(\hbox {FPT}^{(+)}\), a denoised spectrum is generated automatically, without the need for the “Stability test”. The two variants \(\hbox {FPT}^{(\pm )}\) provide self-contained cross-validation of the reconstructed spectral parameters, from which the metabolite concentrations of benign and malignant ovarian cyst fluid are reliably computed. These results are particularly promising for more effective ovarian cancer diagnostics, overcoming the major obstacles that have hindered MRS from becoming the method of choice for non-invasive assessment of ovarian lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Serum cancer antigen, CA-125 is a protein whose presence is often associated with ovarian cancer. However, it has poor sensitivity for early stage malignancy and is also non-specific, being present in other cancers, as well as in several non-malignant conditions, including pregnancy.

  2. In Ref. [40] the total number of benign gynecological lesions is given, and the various types described. From this description it can be deduced that at least two and at most six of these lesions were ovarian.

Abbreviations

Ala:

Alanine

au:

Arbitrary units

BW:

Bandwidth

Cho:

Choline

Crn:

Creatinine

COSY:

2D correlated spectroscopy

Cr:

Creatine

DWI:

Diffusion weighted imaging

FFT:

Fast Fourier transform

FID:

Free induction decay

FPT:

Fast Padé transform

Iso:

Isoleucine

Glc:

Glucose

Gln:

Glutamine

Lac:

Lactate

Lys:

Lysine

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

Met:

Methionine

PLCO:

Prostate, lung, colon, and ovarian (trial)

ppm:

Parts per million

RMS:

Root-mean-square

SCS:

Statistical classification strategy

SNR:

Signal to noise ratio

SNS:

Signal–noise separation

Thr:

Threonine

TR:

Repetition time

TVUS:

Transvaginal ultrasound

Val:

Valine

ww:

Wet weight

References

  1. M. Åkeson, A. Jakobsen, B. Zetterqvist, E. Holmberg, M. Brannström, G. Horvath, A population-based 5-year cohort study of epithelial ovarian cancer in western Sweden. Int. J. Gynecol. Cancer 19, 116–123 (2009)

    Article  Google Scholar 

  2. V. Beral, Million Women Study Collaborators, ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 369, 1703–1710 (2007)

    Article  CAS  Google Scholar 

  3. P. Boyle, M.E. Leon, P. Maisonneuve, P. Autier, Cancer control in women. Update 2003. Int. J. Gynecol. Obstet. 83(Supplement 1), 179–202 (2003)

    Article  Google Scholar 

  4. J. Schildkraut, A. Alberg, E. Bandera, J. Barnholtz-Sloan, M. Bondy, M. Cote, E. Funkhouser, E. Peters, A. Schwartz, P. Terry, K. Wallace, L. Akushevich, F. Wang, S. Crankshaw, P. Moorman, A multi-center population-based case–control study of ovarian cancer in African-American women: the African American Cancer Epidemiology Study (AACES). BMC Cancer 14, 688 (2014)

    Article  Google Scholar 

  5. J. Menczer, I. Liphshitz, M. Barchana, A decreasing incidence of ovarian carcinoma in Israel. Int. J. Gynecol. Obstet. 16, 41–44 (2006)

    CAS  Google Scholar 

  6. A. Ashworth, F. Balkwill, R.C. Bast, J.S. Berek, A. Kaye, J.A. Boyd, G. Mills, J.N. Weinstein, K. Woolley, P. Workman, Opportunities and challenges in ovarian cancer research, a perspective from the 11th ovarian cancer action/HHMT Forum, Lake Como, March 2007. Gynecol. Oncol. 108, 652–657 (2008)

    Article  Google Scholar 

  7. M.A. Brewer, K. Johnson, M. Follen, D. Gershenson, R. Bast, Prevention of ovarian cancer: intraepithelial neoplasia. Clin. Cancer Res. 9, 20–30 (2003)

    CAS  Google Scholar 

  8. N. Wentzensen, S. Wacholder, Talc use and ovarian cancer: epidemiology between a rock and a hard place. J. Natl. Cancer Inst. 106, dju260 (2014)

    Article  Google Scholar 

  9. F. Salehi, L. Dunfield, K. Phillips, D. Krewski, B. Vanderhyden, Risk factors for ovarian cancer: an overview with emphasis on hormonal factors. J. Toxicol. Environ. Health 11, 301–321 (2008)

    Article  CAS  Google Scholar 

  10. P.D.P. Pharoah, The potential for risk stratification in the management of ovarian cancer risk. Int. J. Gynecol. Cancer 22, S16–S17 (2012)

    Article  Google Scholar 

  11. N. Wentzensen, B. Trabert, Hormone therapy: short-term relief, long-term consequences. Lancet (2015). doi:10.1016/S0140-6736(14)62458-2

    Google Scholar 

  12. Å. Klint, L. Tryggvadottir, F. Bray, M. Gislum, T. Hakulinen, H. Storm, M. Enghol, Trends in the survival of patients diagnosed with cancer in female genital organs in Nordic countries. Acta Oncol. 49, 632–643 (2010)

    Article  Google Scholar 

  13. P. Bhatti, K.L. Cushing-Haugen, K.G. Wicklund, J. Doherty, M.A. Rossing, Nightshift work and risk of ovarian cancer. Occup. Environ. Med. 70, 231–237 (2013)

    Article  Google Scholar 

  14. S. Harlap, S.H. Olson, R.R. Barakat, T.A. Caputo, S. Forment, A.J. Jacobs, C. Nakraseive, X. Xue, Diagnostic X-rays and risk of epithelial ovarian carcinoma in Jews. Ann. Epidemiol. 12, 426–434 (2002)

    Article  Google Scholar 

  15. E.R. Woodward, H.V. Sleightholme, A.M. Considine, S. Williamson, J.M. McHugo, D.G. Cruger, Annual surveillance by CA125 and transvaginal ultrasound for ovarian cancer in both high-risk and population risk women is ineffective. Br J. Obstet. Gynaecol. 114, 1500–1509 (2007)

    Article  CAS  Google Scholar 

  16. P. Mohaghegh, A.G. Rockall, Imaging strategy for early ovarian cancer: characterization of adnexal masses with conventional and advanced imaging techniques. Radiographics 32, 1751–1773 (2012)

    Article  Google Scholar 

  17. S. Bhoola, W.J. Hoskins, Diagnosis and management of epithelial ovarian cancer. Obstet. Gynecol. 107, 1399–1410 (2006)

    Article  Google Scholar 

  18. G. Chornokur, E. Armankwah, J. Schildkraut, C. Phelan, Global ovarian cancer health disparities. Gynecol. Oncol. 129, 258–264 (2013)

    Article  Google Scholar 

  19. N. Einhorn, R. Bast, R. Knapp, B. Nilsson, V. Zurawski, K. Sjövall, Long-term follow-up of the Stockholm screening study on ovarian cancer. Gynecol. Oncol. 79, 466–470 (2000)

    Article  CAS  Google Scholar 

  20. R.J. Kurman, K. Visvanathan, R. Roden, T.C. Wu, IeM Shih, Early detection and treatment of ovarian cancer: shifting from early stage to minimal volume of disease based on a new model of carcinogenesis. Am. J. Obstet. Gynecol. 198, 351–356 (2008)

    Article  Google Scholar 

  21. M. Andersen, K. Lowe, B. Goff, Value of symptom-triggered diagnostic evaluation for ovarian cancer. Obstet. Gynecol. 123, 73–79 (2014)

    Article  Google Scholar 

  22. U. Menon, M. Griffin, A. Gentry-Maharaj, Ovarian cancer screening—current status, future directions. Gynecol. Oncol. 132, 490–495 (2014)

    Article  Google Scholar 

  23. H. Kobayashi, Y. Yamada, T. Sado, M. Sakata, S. Yoshida, S. Kawaguchi, S. Kanayama, H. Shigetomi, S. Haruta, Y. Tsuji, S. Ueda, T. Kitanaka, A randomized study of screening for ovarian cancer: a multi-center study in Japan. Int. J. Gynecol. Cancer 18, 414–420 (2008)

    Article  CAS  Google Scholar 

  24. F. Kong, C. Nicole White, X. Xiao, Y. Feng, C. Xu, D. He, Z. Zhang, Y. Yu, Using proteomic approaches to identify new biomarkers for detection and monitoring of ovarian cancer. Gynecol. Oncol. 100, 247–253 (2006)

    Article  CAS  Google Scholar 

  25. I. Shapira, M. Oswald, J. Lovecchio, H. Khalili, A. Menzin, J. Whyte, L. Dos Santos, S. Liang, T. Bhuiya, M. Keogh, C. Mason, K. Sultan, D. Budman, P. Gregersen, A. Lee, Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br. J. Cancer 110, 976–983 (2014)

    Article  CAS  Google Scholar 

  26. A.E. Lokshin, The quest for ovarian cancer screening biomarkers: are we on the right road? Int. J. Gynecol. Cancer 22, S35–S40 (2012)

    Article  Google Scholar 

  27. V. Nossov, M. Amneus, F. Su, J. Lang, J.M. Janco, S.T. Reddy, R. Farias-Eisner, The early detection of ovarian cancer: from traditional methods to proteomics: can we really do better than serum CA-125? Am. J. Obstet. Gynecol. 199, 215–223 (2008)

    Article  CAS  Google Scholar 

  28. K.L. Taylor, R. Shelby, E. Gelmann, C. McGuire, Quality of life and trial adherence among participants in the prostate, lung, colorectal, and ovarian cancer screening trial. J. Natl. Cancer Inst. 96, 1083–1094 (2004)

    Article  Google Scholar 

  29. P.M. McGovern, C.R. Gross, R.A. Krueger, D.A. Engelhard, J.E. Cordes, T.R. Church, False-positive cancer screens and health-related quality of life. Cancer Nurs. 27, 347–352 (2004)

    Article  Google Scholar 

  30. V.A. Moyer, Screening for ovarian cancer: U.S. Preventive Services Task Force reaffirmation recommendation. Ann. Intern. Med. 157, 900–904 (2012)

    Article  Google Scholar 

  31. A. Slomski, Screening women for ovarian cancer still does more harm than good. J. Am. Medical Assoc. 307, 2474–2475 (2012)

    CAS  Google Scholar 

  32. R.J. Morgan, R.D. Alvarez, D.K. Armstrong, R.A. Burger, M. Castells, L.-M. Chen, L. Copeland, M.A. Crispens, D. Gershenson, H. Gray, A. Hakam, L.J. Havrilesky, C. Johnston, S. Lele, L. Martin, U.A. Matulonis, D.M. O’Malley, R.T. Penson, S.W. Remmenga, P. Sabbatini, J.T. Santoso, R.J. Schilder, J. Schink, N. Teng, T.L. Werner, M. Hughes, M.A. Dwyer, Ovarian cancer, version 3.2012. NCCN guidelines insights. J. Natl. Compr. Canc. Netw. 10, 1339–1349 (2012)

    CAS  Google Scholar 

  33. K. Belkić, M. Cohen, M. Márquez, M. Mints, B. Wilczek, A.H. Berman, E. Castellanos, M. Castellanos, Screening of high-risk groups for breast and ovarian cancer in Europe: a focus on the Jewish population. Oncol. Rev. 4, 233–267 (2010)

    Article  Google Scholar 

  34. I. Imaoka, T. Araki, M. Takeuchi, MRI of the female genitourinary tract, in Magnetic Resonance Volume 3 Comprehensive Biomedical Physics, ed. by Dž Belkić, K. Belkić (Elsevier, Amsterdam, 2014), pp. 221–240

  35. K. Kinkel, Y. Lu, A. Mehdizade, M.-F. Pelte, H. Hricak, Indeterminate ovarian mass at US. Radiology 236, 85–94 (2005)

    Article  Google Scholar 

  36. S. Zhao, J. Qiang, G. Zhang, F. Ma, S. Cai, H. Li, L. Wang, Diffusion-weighted MR imaging for differentiating borderline from malignant epithelial tumours of the ovary: pathological correlation. Eur. Radiol. 24, 2292–2299 (2014)

    Article  Google Scholar 

  37. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  CAS  Google Scholar 

  38. M.F. Kircher, H. Hricak, S.M. Larson, Molecular imaging for personalized cancer care. Mol. Oncol. 6, 182–195 (2012)

    Article  CAS  Google Scholar 

  39. L.F.A.G. Massuger, P.B.J. van Vierzen, U. Engelke, A. Heerschap, R. Wevers, \(^{1}\)H magnetic resonance spectroscopy. A new technique to discriminate benign from malignant ovarian tumors. Cancer 82, 1726–1730 (1998)

    Article  CAS  Google Scholar 

  40. S.J. Booth, M.D. Pickles, L.W. Turnbull, In vivo magnetic resonance spectroscopy of gynaecological tumors at 3.0 Tesla. Br. J. Obstet. Gynaecol. 116, 300–303 (2009)

    Article  CAS  Google Scholar 

  41. S.W. Cho, S.G. Cho, J.H. Lee, H.-J. Kim, M.H. Lim, J.H. Kim, C.H. Suh, In vivo proton magnetic resonance spectroscopy in adnexal lesions. Korean J. Radiol. 3, 105–112 (2002)

    Article  Google Scholar 

  42. A. Esseridou, G. Di Leo, L.M. Sconfienza, V. Caldiera, F. Raspagliesi, B. Grijuela, F. Hanozet, F. Podo, F. Sardanelli, In vivo detection of choline in ovarian tumors using 3D MRS. Invest. Radiol. 46, 377–382 (2011)

    Article  CAS  Google Scholar 

  43. S. Hascalik, O. Celik, G. Erdem, Magnetic resonance spectral analysis of ovarian teratomas. Int. J. Gynecol. Obstet. 90, 152–152 (2005)

    Article  CAS  Google Scholar 

  44. S. Hascalik, O. Celik, K. Sarak, M.M. Meydanli, A. Alkan, B. Mizrak, Metabolic changes in pelvic lesions: findings at proton MR spectroscopic imaging. Gynecol. Obstet. Invest. 60, 121–127 (2005)

    CAS  Google Scholar 

  45. E. Kolwijck, U.F. Engelke, M. van der Graaf, A. Heerschap, J. Henk, H.J. Blom, M. Hadfoune, W.A. Buurman, L.F. Massuger, R.A. Wevers, N-acetyl resonances in in vivo and in vitro NMR spectroscopy of cystic ovarian tumors. NMR Biomed. 22, 1093–1099 (2009)

    CAS  Google Scholar 

  46. M.A. McLean, A.N. Priest, I. Joubert, D.J. Lomas, M.Y. Kataoka, H. Earl, R. Crawford, J.D. Brenton, J.R. Griffiths, E. Sala, Metabolic characterization of primary and metastatic ovarian cancer by 1H-MRS in vivo at 3T. Magn. Reson. Med. 62, 855–861 (2009)

    Article  CAS  Google Scholar 

  47. T. Okada, M. Harada, K. Matsuzaki, H. Nishitani, T.J. Aono, Evaluation of female intrapelvic tumors by clinical proton MR spectroscopy. Magn. Reson. Imaging 13, 912–917 (2001)

    Article  CAS  Google Scholar 

  48. P. Stanwell, P. Russell, J. Carter, S. Pather, S. Heintze, C. Mountford, Evaluation of ovarian tumors by proton magnetic resonance spectroscopy at three Tesla. Invest. Radiol. 43, 745–751 (2008)

    Article  Google Scholar 

  49. M. Takeuchi, K. Matsuzaki, M. Harada, Preliminary observations and diagnostic value of lipid peak in ovarian thecomas/fibrothecomas using in vivo proton MR spectroscopy at 3T. J. Magn. Reson. Imaging 36, 907–911 (2012)

    Article  Google Scholar 

  50. E.A. Boss, S.H. Moolenaar, L.F. Massuger, H. Boonstra, U.F. Engelke, J.G. de Jong, R.A. Wevers, High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid. NMR Biomed. 13, 297–30 (2000)

    Article  CAS  Google Scholar 

  51. J.C. Wallace, G.P. Raaphorst, R.L. Somorjai, C.E. Ng, M. Fung Kee Fung, M. Senterman, I.C. Smith, Classification of 1H MR spectra of biopsies from untreated and recurrent ovarian cancer using linear discriminant analysis. Magn. Reson. Med. 38, 569–576 (1997)

    Article  CAS  Google Scholar 

  52. I.C. Smith, D.E. Blandford, Diagnosis of cancer in humans by 1H NMR of tissue biopsies. Biochem. Cell. Biol. 76, 472–476 (1998)

    Article  CAS  Google Scholar 

  53. C.E. Mountford, S. Doran, C.L. Lean, P.L. Russell, Proton MRS can determine the pathology of human cancers with a high level of accuracy. Chem. Rev. 104, 3677–3704 (2004)

    Article  CAS  Google Scholar 

  54. L. Gluch, Magnetic resonance in surgical oncology: II-literature review. ANZ. J. Surg. 75, 464–470 (2005)

    Article  Google Scholar 

  55. J.K. Nicholson, I.D. Wilson, High resolution proton magnetic resonance spectroscopy of biological fluids. Prog. NMR Spectrosc. 21, 449–501 (1989)

    Article  CAS  Google Scholar 

  56. Dž. Belkić, Strikingly stable convergence of the fast Padé transform (FPT) for high resolution parametric and non-parametric signal processing of Lorentzian and non-Lorentzian spectra. Nucl. Instrum. Methods Phys. Res. A 525, 366–371 (2004)

  57. Dž. Belkić, Quantum Mechanical Signal Processing and Spectral Analysis (Institute of Physics Publishing, Bristol, 2005)

  58. Dž. Belkić, K. Belkić, Signal Processing in Magnetic Resonance Spectroscopy with Biomedical Applications (Taylor & Francis, London, 2010)

  59. Dž. Belkić, Exact signal–noise separation by Froissart doublets in the fast Padé transform for magnetic resonance spectroscopy. Adv. Quantum Chem. 56, 95–179 (2009)

  60. Dž. Belkić, K. Belkić, The general concept of signal–noise separation (SNS). J. Math. Chem. 45, 563–597 (2009)

  61. K. Belkić, Resolution performance of the fast Padé transform: potential advantages for magnetic resonance spectroscopy in ovarian cancer diagnostics. Nucl. Instrum. Methods Phys. Res. A 580, 874–880 (2007)

    Google Scholar 

  62. Dž. Belkić, K. Belkić, Mathematical modeling applied to an NMR problem in ovarian cancer detection. J. Math. Chem. 43, 395–425 (2008)

  63. Dž. Belkić, K. Belkić, Magnetic resonance spectroscopy with high-resolution and exact quantification in the presence of noise for improving ovarian cancer detection. J. Math. Chem. 50, 2558–2576 (2012)

  64. Dž. Belkić, K. Belkić, Resolution enhancement as a key step towards clinical implementation of Padé-optimized magnetic resonance spectroscopy for diagnostic oncology. J. Math. Chem. 51, 2608–2637 (2013)

  65. Dž. Belkić, K. Belkić, Strategic steps for advanced molecular imaging with magnetic resonance-based diagnostic modalities. Technol. Cancer Res. Treat. 14, 119–142 (2015)

  66. A.C. Ojo, The Analysis and Automatic Classification of Nuclear Magnetic Resonance Signals. PhD Thesis. (The University of Edinburgh, 2010), Edinburgh Research Archive, http://hdl.handle.net/1842/4109

  67. Dž. Belkić, Analytical continuation by numerical means in spectral analysis using the fast Padé transform (FPT). Nucl. Instrum. Methods Phys. Res. A 525, 372–378 (2004)

  68. Dž. Belkić, Exact quantification of time signals in Padé-based magnetic resonance spectroscopy. Phys. Med. Biol. 51, 2633–2670 (2006)

  69. K. Glunde, J. Jiang, S.A. Moestue, I.S. Gribbestad, MRS/MRSI guidance in molecular medicine: targeting choline and glucose metabolism. NMR Biomed. 24, 673–690 (2011)

    Article  CAS  Google Scholar 

  70. Dž. Belkić, K. Belkić, Proof-of-the-concept study on mathematically optimized magnetic resonance spectroscopy for breast cancer diagnostics. Technol. Cancer Res. Treat. (2014). doi:10.1177/1533034614547446

  71. Dž. Belkić, K. Belkić, Padé optimization of noise-corrupted magnetic resonance spectroscopic time signals from fibroadenoma of the breast. J. Math. Chem. 52, 2680–2713 (2014)

  72. Dž. Belkić, K. Belkić, Optimized spectral analysis in magnetic resonance spectroscopy for early tumor diagnostics. J. Phys. Conf. Ser. 565, 012002 (2014). doi:10.1088/1742-6596/565/1/012002

  73. E. Iorio, D. Mezzanzanica, P. Alberti, F. Spadaro, C. Ramoni, S. D’Ascenzo, D. Millimaggi, A. Pavan, V. Dolo, S. Canavari, F. Podo, Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res. 65, 9369–9376 (2005)

    Article  CAS  Google Scholar 

  74. Dž. Belkić, K. Belkić, Molecular imaging in the framework of personalized cancer medicine. Isr. Med. Assoc. J. 15, 665–672 (2013)

  75. Dž. Belkić, K. Belkić, The role of optimized molecular imaging in personalized cancer medicine. Diag. Imaging Eur. 30, 28–31 (2014)

  76. M. Mescher, H. Merkle, J. Kirsch, M. Garwood, R. Gruetter, Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266–272 (1998)

    Article  CAS  Google Scholar 

  77. P.A. Bottomley, The trouble with spectroscopy papers. J. Magn. Reson. Imaging 2, 1–8 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by King Gustav the 5th Jubilee Fund, Cancerfonden, the Karolinska Institute Research Fund and FoUU through Stockholm County Council to which the authors are grateful.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dževad Belkić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkić, D., Belkić, K. How the fast Padé transform handles noise for MRS data from the ovary: importance for ovarian cancer diagnostics. J Math Chem 54, 149–185 (2016). https://doi.org/10.1007/s10910-015-0555-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0555-x

Keywords

Navigation