Skip to main content
Log in

Potential energy function based on the narcissus constant, its square and its cube

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

The narcissus constant, N = 2.3983843828..., is defined as a number that fulfills the narcissistic infinite nested radical equation

$$\sqrt[N]{N+N\times \sqrt[N]{N+N\times \sqrt[N]{N+\cdots}}}=N=\sqrt[N]{N\times N+\sqrt[N]{N\times N+\sqrt[N]{N\times \cdots}}}.$$

Incorporation of this constant, its square and its cube into the generalized version of the Lennard-Jones potential function gives the narcissus constant potential function

$$\frac{U_{\rm NLJ} }{D}=\frac{1}{N-1}\left( {\frac{R}{r}} \right)^{N^3}-\frac{N}{N-1}\left( {\frac{R}{r}} \right)^{N^2},$$

which (a) is suitable for modeling van der Waals interaction due to its agreement with the Lennard-Jones (12-6) potential energy curve over long range, and (b) forms simple generalized hybrid interatomic–intermolecular potential energy function due to its correlation with the averaged form of Lennard-Jones, Morse, Buckingham and Linnett potential energy curve near the minimum well-depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.C. Lim, On the applicability of mathematical constants and sequences in intermolecular potential energy functions, J. Math. Chem. (in press).

  2. T.C. Lim, Combination of pi and golden ratio in Lennard–Jones-type and Morse-type potential energy functions, J. Math. Chem. (in press).

  3. Vieta F. (1970) Uriorum De Rebus Mathematicis Responsorum. Georg Olms, New York, pp. 398–446

    Google Scholar 

  4. Wells D. (1986) The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, Middlesex, p. 50

    Google Scholar 

  5. Beckmann P. (1989) A History of Pi, 3rd ed. Dorset Press, New York, p. 95

    Google Scholar 

  6. Livio M. (2002) The Golden Ratio: The Story of Pi, the World’s Most Astonishing Number. Broadway Books, New York, p. 83

    Google Scholar 

  7. Stewart I. (1996) Tales of a neglected number, Sci. Am. 274:102–103

    Google Scholar 

  8. J. Aarts, R.J. Fokkink and G. Kruijtzer, Morphic Numbers, Nieuw Archief voor Wiskunde 5th Ser 2 (2001) 56–58.

  9. F. Le Lionnais, Les Nombres Remarquables (Hermann, Paris, 1983) pp. 51 and 143.

  10. Saaty T.L., Kainen P.C. (1986) The Four-Color Problem : Assaults and Conquest. Dover, New York, p. 162

    Google Scholar 

  11. Lim T.C. (2005) A functionally flexible interatomic energy function based on classical potentials. Chem. Phys. 320:54–58

    Article  CAS  Google Scholar 

  12. Lennard-Jones J.E. (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106:463–477

    Article  Google Scholar 

  13. Mecke R. (1927) Bandenspektra und periodisches system der elemente. Zeit. Physik 42:390–425

    Article  CAS  Google Scholar 

  14. G.B.B.M. Sutherland, The relation between the force constant, the inter-nuclear distance, and the dissociation energy of a diatomic linkage, Proc. Indian Acad. Sci. 8 (1938) 341–344.

    Google Scholar 

  15. Morse P.M. (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34:57–64

    Article  CAS  Google Scholar 

  16. Buckingham R.A. (1938) The classical equation of gaseous helium, neon and argon. Proc. R. Soc. Lond. A 168:264–283

    Article  CAS  Google Scholar 

  17. Wu C.K., Yang C.T. (1944) The relation between the force constant and the interatomic distance of a diatomic linkage. J. Phys. Chem. 48:295–303

    Article  CAS  Google Scholar 

  18. Linnett J.W. (1940) The relation between potential energy and interatomic distance in some diatomic molecules. Trans. Faraday Soc. 36:1123–1134

    Article  CAS  Google Scholar 

  19. Linnett J.W. (1942) The relation between potential energy and interatomic distance in some diatomic molecules II. Trans. Faraday Soc. 38, 1–9

    Article  CAS  Google Scholar 

  20. R. Levi, R. Roundy and D.B. Shmoys, A constant approximation algorithm for the one-warehouse multi-retailer problem, in: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, Session 4C (Vancouver, Washington, DC, 2005) pp. 365–374.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, TC. Potential energy function based on the narcissus constant, its square and its cube. J Math Chem 43, 304–313 (2008). https://doi.org/10.1007/s10910-006-9196-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9196-4

Keywords

AMS subject classification

Navigation