Skip to main content
Log in

A Characterization Procedure for Large Area Spiderweb TES

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this communication, we describe a characterization procedure suitable to extract the most relevant design parameters of a large area absorber TES, designed for Cosmic Microwave Background measurements, very similar to those that will be fabricated for the LSPE/SWIPE balloon-borne experiment. This is a large (8 mm diameter) Au-on-SiN spiderweb designed to collect many modes of the incoming microwave radiation, in the 145–240 GHz range. After obtaining the critical temperature of the Ti/Au TES and its I–V characteristics, we operate it in Negative Electrothermal Feedback (ETF, DC voltage bias) and we record its response after amplification by a SQUID Array Amplifier. Then, in the same conditions, we illuminate the central area of the absorber with a pulsed LED (red visible light), mounted in the cryogenic environment, with pulses short enough to mimic an instantaneous energy deposition. Furthermore, the same LED is driven to produce a slow modulation of the output signal, to explore the bolometric regime of the TES. With this set of measurements we are able to extract its thermal conductance, its natural time constant, and the loop gain associated with the optimal bias point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.-M. Lamarre, J.-L. Puget, P.A.R. Ade, F. Bouchet, G. Guyot, A.E. Lange, F. Pajot, A. Arondel, K. Benabed, J.-L. Beney, A. Benoît, J.-P. Bernard, R. Bhatia, Y. Blanc, J.J. Bock, E. Bréelle, T.W. Bradshaw, P. Camus, A. Catalano, J. Charra, M. Charra, S.E. Church, F. Couchot, A. Coulais, B.P. Crill, M.R. Crook, K. Dassas, P. de Bernardis, J. Delabrouille, P. de Marcillac, J.-M. Delouis, F.-X. Désert, C. Dumesnil, X. Dupac, G. Efstathiou, P. Eng, C. Evesque, J.-J. Fourmond, K. Ganga, M. Giard, R. Gispert, L. Guglielmi, J. Haissinski, S. Henrot-Versillé, E. Hivon, W.A. Holmes, W.C. Jones, T.C. Koch, H. Lagardère, P. Lami, J. Landé, B. Leriche, C. Leroy, Y. Longval, J.F. Macías-Pérez, T. Maciaszek, B. Maffei, B. Mansoux, C. Marty, S. Masi, C. Mercier, M.-A. Miville-Deschênes, A. Moneti, L. Montier, J.A. Murphy, J. Narbonne, M. Nexon, C.G. Paine, J. Pahn, O. Perdereau, F. Piacentini, M. Piat, S. Plaszczynski, E. Pointecouteau, R. Pons, N. Ponthieu, S. Prunet, D. Rambaud, G. Recouvreur, C. Renault, I. Ristorcelli, C. Rosset, D. Santos, G. Savini, G. Serra, P. Stassi, R.V. Sudiwala, J.-F. Sygnet, J.A. Tauber, J.-P. Torre, M. Tristram, L. Vibert, A. Woodcraft, V. Yurchenko, D. Yvon, Planck pre-launch status: the HFI instrument, from specification to actual performance. Astron. Astrophys. 520, 9 (2010). https://doi.org/10.1051/0004-6361/200912975

    Article  Google Scholar 

  2. P.C. Nagler, K.T. Crowley, K.L. Denis, A.M. Devasia, D.J. Fixsen, A.J. Kogut, G. Manos, S. Porter, T.R, Stevenson, Multimode bolometer development for the PIXIE instrument, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, W.S. Holland, J. Zmuidzinas, editors, vol. 9914, p. 99141 (2016). https://doi.org/10.1117/12.2231082

  3. J.M. Gildemeister, A.T. Lee, P.L. Richards, A fully lithographed voltage-biased superconducting spiderweb bolometer. Appl. Phys. Lett. 74(6), 868–870 (1999). https://doi.org/10.1063/1.123393

    Article  ADS  Google Scholar 

  4. M. Biasotti, V. Ceriale, D. Corsini, M. De Gerone, F. Gatti, A. Orlando, G. Pizzigoni, Fabrication and test of large area spider-web bolometers for CMB measurements. J. Low Temp. Phys. 184(3–4), 642–646 (2016). https://doi.org/10.1007/s10909-015-1390-y

    Article  ADS  Google Scholar 

  5. F. Columbro, P.G. Madonia, L. Lamagna, E.S. Battistelli, A. Coppolecchia, P. de Bernardis, R. Gualtieri, S. Masi, A. Paiella, F. Piacentini, G. Presta, M. Biasotti, G. D’Alessandro, F. Gatti, L. Mele, B. Siri, SWIPE multi-mode pixel assembly design and beam pattern measurements at cryogenic temperature. J. Low Temp. Phys. 199(1–2), 312–319 (2020). https://doi.org/10.1007/s10909-020-02396-4

    Article  ADS  Google Scholar 

  6. G. Addamo, P.A.R. Ade, C. Baccigalupi, LSPE collaboration: the large scale polarization explorer (lspe) for cmb measurements: performance forecast. J. Cosmol. Astropart. Phys. 2021(08), 008 (2021). https://doi.org/10.1088/1475-7516/2021/08/008

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of INFN and the Italian Space Agency (ASI) through the LSPE program, and the ASI Grant No. 2020-25-HH.0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tartari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartari, A., Baldini, A., Cei, F. et al. A Characterization Procedure for Large Area Spiderweb TES. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03111-3

Keywords

Navigation