Skip to main content
Log in

Characterization of Two Fast-Turnaround Dry Dilution Refrigerators for Scanning Probe Microscopy

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Low-temperature scanning probe microscopes (SPMs) are critical for the study of quantum materials and quantum information science. Due to the rising costs of helium, cryogen-free cryostats have become increasingly desirable. However, they typically suffer from comparatively worse vibrations than cryogen-based systems, necessitating the understanding and mitigation of vibrations for SPM applications. Here we demonstrate the construction of two cryogen-free dilution refrigerator SPMs with minimal modifications to the factory default and we systematically characterize their vibrational performance. We measure the absolute vibrations at the microscope stage with geophones and use both microwave impedance microscopy and a scanning single-electron transistor to independently measure tip-sample vibrations. Additionally, we implement customized filtering and thermal anchoring schemes and characterize the cooling power at the scanning stage and the tip electron temperature. This work serves as a reference to researchers interested in cryogen-free SPMs, as such characterization is not standardized in the literature or available from manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data are available from the corresponding authors upon reasonable request.

Code availability

The code that support these findings are available from the corresponding authors upon reasonable request.

References

  1. P. Das, R.B. de Ouboter, K.W. Taconis, A realization of a London-Clarke-Mendoza type refrigerator, in Low Temperature Physics LT9. ed. by J.G. Daunt, D.O. Edwards, F.J. Milford, M. Yaqub (Springer, Boston, 1965), pp.1253–1255. https://doi.org/10.1007/978-1-4899-6443-4_133

    Chapter  Google Scholar 

  2. H. Zu, W. Dai, A.T.A.M. de Waele, Development of dilution refrigerators–A review. Cryogenics 121, 103390 (2022). https://doi.org/10.1016/j.cryogenics.2021.103390

    Article  Google Scholar 

  3. T. Tomaru, T. Suzuki, T. Haruyama, T. Shintomi, A. Yamamoto, T. Koyama, R. Li, Vibration analysis of cryocoolers. Cryogenics 44(5), 309–317 (2004). https://doi.org/10.1016/j.cryogenics.2004.02.003

    Article  ADS  Google Scholar 

  4. A. Chijioke, J. Lawall, Vibration spectrum of a pulse-tube cryostat from 1Hz to 20kHz. Cryogenics 50(4), 266–270 (2010). https://doi.org/10.1016/j.cryogenics.2010.01.005

    Article  ADS  Google Scholar 

  5. E. Olivieri, J. Billard, M. De Jesus, A. Juillard, A. Leder, Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements. Nucl. Instrum. Methods Phys. Res. A 858, 73–79 (2017). https://doi.org/10.1016/j.nima.2017.03.045

    Article  ADS  Google Scholar 

  6. A. D’Addabbo, C. Bucci, L. Canonica, S. Di Domizio, P. Gorla, L. Marini, A. Nucciotti, I. Nutini, C. Rusconi, B. Welliver, An active noise cancellation technique for the CUORE Pulse Tube cryocoolers. Cryogenics 93, 56–65 (2018). https://doi.org/10.1016/j.cryogenics.2018.05.001

    Article  ADS  Google Scholar 

  7. Y.J. Song, A.F. Otte, V. Shvarts, Z. Zhao, Y. Kuk, S.R. Blankenship, A. Band, F.M. Hess, J.A. Stroscio, Invited Review Article: a 10 mK scanning probe microscopy facility. Rev. Sci. Instrum. 81(12), 121101 (2010). https://doi.org/10.1063/1.3520482

    Article  ADS  Google Scholar 

  8. E.W. Hudson, R.W. Simmonds, C.A. Yi Leon, S.H. Pan, J.C. Davis, A very low temperature vibration isolation system. Czech. J. Phys. 46(5), 2737–2738 (1996). https://doi.org/10.1007/BF02570355

    Article  Google Scholar 

  9. M. de Wit, G. Welker, K. Heeck, F.M. Buters, H.J. Eerkens, G. Koning, H. van der Meer, D. Bouwmeester, T.H. Oosterkamp, Vibration isolation with high thermal conductance for a cryogen-free dilution refrigerator. Rev. Sci. Instrum. 90(1), 015112 (2019). https://doi.org/10.1063/1.5066618

    Article  ADS  Google Scholar 

  10. M. Pelliccione, A. Sciambi, J. Bartel, A.J. Keller, D. Goldhaber-Gordon, Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator. Rev. Sci. Instrum. 84(3), 033703 (2013). https://doi.org/10.1063/1.4794767

    Article  ADS  Google Scholar 

  11. S. Geaney, D. Cox, T. Hönigl-Decrinis, R. Shaikhaidarov, S.E. Kubatkin, T. Lindström, A.V. Danilov, S.E. de Graaf, Near-field scanning microwave microscopy in the single photon regime. Sci. Rep. 9(1), 12539 (2019). https://doi.org/10.1038/s41598-019-48780-3

    Article  ADS  Google Scholar 

  12. A.M.J. den Haan, G.H.C.J. Wijts, F. Galli, O. Usenko, G.J.C. van Baarle, D.J. van der Zalm, T.H. Oosterkamp, Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK. Rev. Sci. Instrum. 85(3), 035112 (2014). https://doi.org/10.1063/1.4868684

    Article  ADS  Google Scholar 

  13. D. Low, G.M. Ferguson, A. Jarjour, B.T. Schaefer, M.D. Bachmann, P.J.W. Moll, K.C. Nowack, Scanning SQUID microscopy in a cryogen-free dilution refrigerator. Rev. Sci. Instrum. 92(8), 083704 (2021). https://doi.org/10.1063/5.0047652

    Article  ADS  Google Scholar 

  14. P.J. Scheidegger, S. Diesch, M.L. Palm, C.L. Degen, Scanning nitrogen-vacancy magnetometry down to 350 mK. Appl. Phys. Lett. 120(22), 224001 (2022). https://doi.org/10.1063/5.0093548

    Article  ADS  Google Scholar 

  15. H. Zhou, N. Auerbach, I. Roy, M. Bocarsly, M.E. Huber, B. Barick, A. Pariari, M. Hücker, Z.S. Lim, A. Ariando, A.I. Berdyugin, N. Xin, M. Rappaport, Y. Myasoedov, E. Zeldov, Scanning SQUID-on-tip microscope in a top-loading cryogen-free dilution refrigerator. Rev. Sci. Instrum. 94(5), 053706 (2023). https://doi.org/10.1063/5.0142073

    Article  Google Scholar 

  16. L.W. Cao, C. Wu, R. Bhattacharyya, R. Zhang, M.T. Allen, MilliKelvin microwave impedance microscopy in a dry dilution refrigerator. Rev. Sci. Instrum. 94(9), 093705 (2023). https://doi.org/10.1063/5.0159548

    Article  ADS  Google Scholar 

  17. D. Schiessl, J.R. Kirtley, L. Paulius, A.J. Rosenberg, J.C. Palmstrom, R.R. Ullah, C.M. Holland, Y.-K.-K. Fung, M.B. Ketchen, G.W. Gibson, Jr., K.A. Moler, Determining the vibrations between sensor and sample in SQUID microscopy. Appl. Phys. Lett. 109(23), 232601 (2016). https://doi.org/10.1063/1.4971201

    Article  ADS  Google Scholar 

  18. Y. Shperber, N. Vardi, E. Persky, S. Wissberg, M.E. Huber, B. Kalisky, Scanning SQUID microscopy in a cryogen-free cooler. Rev. Sci. Instrum. 90(5), 053702 (2019). https://doi.org/10.1063/1.5087060

    Article  ADS  Google Scholar 

  19. L. Bishop-Van Horn, Z. Cui, J.R. Kirtley, K.A. Moler, Cryogen-free variable temperature scanning SQUID microscope. Rev. Sci. Instrum. 90(6), 063705 (2019). https://doi.org/10.1063/1.5085008

    Article  ADS  Google Scholar 

  20. G. Batey, S. Chappell, M.N. Cuthbert, M. Erfani, A.J. Matthews, G. Teleberg, A rapid sample-exchange mechanism for cryogen-free dilution refrigerators compatible with multiple high-frequency signal connections. Cryogenics 60, 24–32 (2014). https://doi.org/10.1016/j.cryogenics.2014.01.007

    Article  ADS  Google Scholar 

  21. F. van Kann, J. Winterflood, Simple method for absolute calibration of geophones, seismometers, and other inertial vibration sensors. Rev. Sci. Instrum. 76(3), 034501 (2005). https://doi.org/10.1063/1.1867432

    Article  ADS  Google Scholar 

  22. Z. Chu, L. Zheng, K. Lai, Microwave microscopy and its applications. Annu. Rev. Mater. Res. 50(1), 105–130 (2020). https://doi.org/10.1146/annurev-matsci-081519-011844

    Article  ADS  Google Scholar 

  23. M.E. Barber, E.Y. Ma, Z.-X. Shen, Microwave impedance microscopy and its application to quantum materials. Nat. Rev. Phys. 4(1), 61–74 (2022). https://doi.org/10.1038/s42254-021-00386-3

    Article  Google Scholar 

  24. Y.-T. Cui, E.Y. Ma, Z.-X. Shen, Quartz tuning fork based microwave impedance microscopy. Rev. Sci. Instrum. 87(6), 063711 (2016). https://doi.org/10.1063/1.4954156

    Article  ADS  Google Scholar 

  25. M.J. Yoo, T.A. Fulton, H.F. Hess, R.L. Willett, L.N. Dunkleberger, R.J. Chichester, L.N. Pfeiffer, K.W. West, Scanning single-electron transistor microscopy: imaging individual charges. Science 276(5312), 579–582 (1997). https://doi.org/10.1126/science.276.5312.579

    Article  Google Scholar 

  26. J. Yu, B.A. Foutty, Z. Han, M.E. Barber, Y. Schattner, K. Watanabe, T. Taniguchi, P. Phillips, Z.-X. Shen, S.A. Kivelson, B.E. Feldman, Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene. Nat. Phys. 18(7), 825–831 (2022). https://doi.org/10.1038/s41567-022-01589-w

    Article  Google Scholar 

  27. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, Electron transport in quantum dots, in Mesoscopic Electron Transport, ed. by L.L. Sohn, L.P. Kouwenhoven, G. Schön ((Springer, Dordrecht, 1997), pp. 105–214. https://doi.org/10.1007/978-94-015-8839-3_4

    Chapter  Google Scholar 

  28. PI Ceramic GmbH, Lindenstraße, 07589 Lederhose, Germany

  29. F. Kuemmeth, C.M. Marcus, Reducing Noise and Temperature During Measurements in Cryostats. US 9826622B2 (2017)

  30. L. Ella, A. Rozen, J. Birkbeck, M. Ben-Shalom, D. Perello, J. Zultak, T. Taniguchi, K. Watanabe, A.K. Geim, S. Ilani, J.A. Sulpizio, Simultaneous voltage and current density imaging of flowing electrons in two dimensions. Nat. Nanotechnol. 14(5), 480–487 (2019). https://doi.org/10.1038/s41565-019-0398-x

    Article  ADS  Google Scholar 

  31. M. Allen, Y. Cui, E.Y. Ma, M. Mogi, M. Kawamura, I.C. Fulga, D. Goldhaber-Gordon, Y. Tokura, Z.-X. Shen, Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl. Acad. Sci. 116(29), 14511–14515 (2019). https://doi.org/10.1073/pnas.1818255116

    Article  ADS  Google Scholar 

  32. L.K. Rodenbach, I.T. Rosen, E.J. Fox, P. Zhang, L. Pan, K.L. Wang, M.A. Kastner, D. Goldhaber-Gordon, Bulk dissipation in the quantum anomalous Hall effect. APL Mater. 9(8), 081116 (2021). https://doi.org/10.1063/5.0056796

    Article  ADS  Google Scholar 

  33. G.M. Ferguson, R. Xiao, A.R. Richardella, D. Low, N. Samarth, K.C. Nowack, Direct visualization of electronic transport in a quantum anomalous Hall insulator. Nat. Mater. 22(9), 1100–1105 (2023). https://doi.org/10.1038/s41563-023-01622-0

    Article  ADS  Google Scholar 

  34. J. Franklin, J. Bedard, I. Sochnikov, Versatile millikelvin hybrid cooling platform for superconductivity research. IEEE Trans. Appl. Supercond. 33(5), 1–3 (2023). https://doi.org/10.1109/TASC.2023.3239581

    Article  Google Scholar 

  35. K. Uhlig, Dry dilution refrigerator with pulse tube shutoff option. Cryogenics 130, 103649 (2023). https://doi.org/10.1016/j.cryogenics.2023.103649

    Article  Google Scholar 

Download references

Funding

This work was supported by the QSQM, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award # DE-SC0021238. JCH acknowledges support from the Stanford Q-FARM Quantum Science and Engineering Fellowship. Z. Ji is supported by the Stanford Science Fellowship and the Urbanek-Chodorow postdoctoral fellowship awards. Z. Jiang is partially supported by the Illinois Quantum Information Science and Technology Center (IQUIST) Postdoctoral Fellowship. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-2026822.

Author information

Authors and Affiliations

Authors

Contributions

MEB, JY, and YL helped design and install the DR and microscope at SLAC, and JG and GRA led design and installation at UIUC. MEB, Z. Jiang, and JG conducted the geophone measurements. YL, JY, MEB, and YH conducted the scanning SET measurements. MEB conducted the MIM measurements. MEB and YL designed and tested the filtering. YL and JCH designed and fabricated test samples. BEF, AK, Z-XS, KAM, DJVH supervised the work. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Mark E. Barber or Benjamin E. Feldman.

Ethics declarations

Conflict of interest

Z.-X.S. is a co-founder of PrimeNano Inc., which licensed the microwave impedance microscopy technology from Stanford University for commercial instruments. The remaining authors declare no competing interests.

Ethical approval

The submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Consent to participate

All authors consent to participate.

Consent to publication

All authors consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information

This article has an accompanying supplementary information file. (pdf 10,874 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barber, M.E., Li, Y., Gibson, J. et al. Characterization of Two Fast-Turnaround Dry Dilution Refrigerators for Scanning Probe Microscopy. J Low Temp Phys 215, 1–23 (2024). https://doi.org/10.1007/s10909-023-03035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03035-4

Keywords

Navigation