Skip to main content
Log in

High-Performance Ti Transition-Edge Sensor-based Photon-Number Resolving Detectors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting transition-edge sensor (TES)-based single-photon detectors with high detection efficiency, low dark count rate and photon-number resolving capability are suitable for many scientific applications. We have developed a high-performance Ti TES-based single-photon detector at a working wavelength of about 1550 nm. The TES with a critical temperature of around 200 mK has an active area of 10 μm × 10 μm, which is manually aligned to an ultra-high numerical aperture fiber with a mode field diameter of 4 μm, leading to a nearly perfect coupling efficiency. The Ti TES integrated into an optical cavity consisting of a dielectric mirror and an anti-reflection coating exhibits an absorption efficiency of 97% at 1550 nm. The fabricated TES shows an energy resolution of 0.21 eV using a 1540 nm pulsed source, and it can resolve up to 20 photons. The measured system detection efficiency is 95% ± 0.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K.D. Irwin, J. Supercond. Nov. Magn. 34, 1601–1606 (2021). https://doi.org/10.1007/s10948-020-05730-9

    Article  CAS  Google Scholar 

  2. A.E. Lita, A.J. Miller, S.W. Nam, Opt. Express 16, 3032 (2008). https://doi.org/10.1364/OE.16.003032

    Article  ADS  PubMed  Google Scholar 

  3. D. Fukuda et al., Opt. Express 19, 870 (2011). https://doi.org/10.1364/OE.19.000870

    Article  ADS  CAS  PubMed  Google Scholar 

  4. P. Li et al., Nucl. Inst. Method A 1054, 168408 (2023). https://doi.org/10.1016/j.nima.2023.168408

    Article  CAS  Google Scholar 

  5. R. Kobayashi, K. Hattori, S. Inoue, D. Fukuda, IEEE Trans. Appl. Supercond. 29, 2101105 (2019). https://doi.org/10.1109/TASC.2019.2909978

    Article  Google Scholar 

  6. K. Hattori, T. Konno, Y. Miura, S. Takasu, D. Fukuda, Supercond. Sci. Technol. 35, 095002 (2022). https://doi.org/10.1088/1361-6668/ac7e7b

    Article  ADS  Google Scholar 

  7. P.Z. Li, J.Q. Zhong, W. Zhang et al., Acta Photonica Sinica 52(5), 0552201 (2023). https://doi.org/10.3788/gzxb20235205.0552201

    Article  Google Scholar 

  8. W. Zhang et al., IEEE Trans. Appl. Supercond. 29, 2100505 (2019). https://doi.org/10.1109/TASC.2019.2906276

    Article  Google Scholar 

  9. P.Z. Li, J.Q. Zhong, Y. Geng, W. Zhang, Z. Wang, S.C. Shi, Proc. SPIE 11909, 1190906 (2021). https://doi.org/10.1117/12.2603899

    Article  Google Scholar 

  10. J. Zhu et al., Infrared Phys. Technol. 115, 103722 (2021). https://doi.org/10.1016/j.infrared.2021.103722

    Article  CAS  Google Scholar 

  11. J. Wang et al., Sci. Rep. 6, 28885 (2016). https://doi.org/10.1038/srep28885

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Gerrits et al., Metrologia 57, 015002 (2020). https://doi.org/10.1088/1681-7575/ab4533

    Article  ADS  Google Scholar 

  13. P.Z. Li et al., J. Low Temp. Phys. 209, 248 (2022). https://doi.org/10.1007/s10909-022-02887-6

    Article  ADS  CAS  Google Scholar 

  14. D. Alberto et al., IEEE Trans. Appl. Supercond. 21, 285 (2011). https://doi.org/10.1109/TASC.2010.2087736

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported partly by NSFC under Grants 12293032, 120101002, 12173097 and U1931123, the National Key R&D Program of China under Grant 2020YFC2201703, CAS under Grants GJJSTD20210002, Jiangsu Province under Grant BRA2020411.

Author information

Authors and Affiliations

Authors

Contributions

PZL and WZ wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhong, J., Zhang, W. et al. High-Performance Ti Transition-Edge Sensor-based Photon-Number Resolving Detectors. J Low Temp Phys 214, 100–105 (2024). https://doi.org/10.1007/s10909-023-03015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03015-8

Keywords

Navigation