Skip to main content
Log in

On the Difference Between Type I and Type II Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

It is shown that for the metals that get superconducting, the heat capacity above the transition temperature, TSC, is given by a sequence of power function of absolute temperature and not, as for the metals that do not get superconducting (Au, Ag, Cu…), by a superposition of a linear and a cubic term of absolute temperature. The two heat capacities have to be attributed to the relevant bosons in the critical range at T = 0. For the metals that get superconducting, the two boson fields interact and their heat capacities do no longer superimpose. Since the interaction details change with temperature, a sequence of power functions with rational exponents, different from the parent exponents of α = 3 and α = 1 occur. Each power function holds over a finite temperature range. A change of the exponent is a typical crossover event. From analyses of available experimental heat capacity data, the exponents of α = 1/2, 1, 3/2, 2, 3 and 4 could firmly be established. As the zero-field heat capacity of all superconductors, the critical field of the type I superconductors, BC(T), exhibits critical behavior at T = 0 only but not at the transition temperature, TSC. The superconducting transition, therefore, is not into a long-range ordered state. For all type I superconductors the critical exponent of BC(T) at T = 0 seems to be ε = 2. The lower and upper critical fields, BC1(T) and BC2(T), of the type II superconductors exhibit critical behavior not only at T = 0 but additionally at TSC, as it is common for long-range ordered systems. The experimentally identified critical exponents at T = 0 are ε = 3/2, 4/2, 5/2, 6/2 and 8/2. At T = TSC, the identified critical exponents are β = 2/3, 3/4 and 1. The large BC1 and BC2 values indicate that the two Cooper-pair electrons of the type II superconductors are much stronger coupled compared to the type I superconductors, remarkably, without a corresponding increase in TSC. The diameter of the Cooper pairs of the type II superconductors and, therefore, their diamagnetic moments are correspondingly low. At the critical field BC1, the diamagnetic moment of the individual Cooper-pair is no longer large enough such that only one layer of Cooper pairs next to the inner surface of the sample is sufficient to shield an applied magnetic field completely. The external field then penetrates the superconductor as an ordered flux-line lattice. As the critical behavior of BC1 and BC2 at TSC suggest, the flux-line lattice has the character of a long-range ordered system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.G. Wilson, J. Kogut, Phys. Rep. 12C, 75 (1974)

    Article  ADS  Google Scholar 

  2. P. Debye, Ann. Physik 39, 789 (1912)

    Article  ADS  Google Scholar 

  3. U. Köbler, Int. J. Thermo. 24, 238 (2021)

    Article  Google Scholar 

  4. U. Köbler, Int. J. Thermo. 26, 026 (2023)

    Article  Google Scholar 

  5. U. Köbler, J. Low Temp. Phys. (2023). https://doi.org/10.1007/s10909-022-02886-7

    Article  Google Scholar 

  6. U. Köbler, Int. J. Thermo. 20, 210 (2017)

    Article  Google Scholar 

  7. W.S. Corak, M.P. Garfunkel, C.B. Satterthwaite, A. Wexler, Phys. Rev. 98, 1699 (1955)

    Article  ADS  Google Scholar 

  8. B.B. Goodman, E. Mendoza, Phil. Mag. 42, 594 (1951)

    Article  Google Scholar 

  9. U. Köbler, J. Magn. Magn. Mater. 453, 17 (2018)

    Article  ADS  Google Scholar 

  10. U. Köbler, J. Magn. Magn. Mater. 502, 166533 (2020)

    Article  Google Scholar 

  11. U. Köbler, J. Magn. Magn. Mater. 325, 87 (2013)

    Article  ADS  Google Scholar 

  12. D. Cribier, B. Jacrot, L. Madhav Rao, B. Farnoux, Phys. Lett. 9, 106 (1964)

    Article  ADS  Google Scholar 

  13. J. Schelten, H. Ullmaier, W. Schmatz, Phys. Stat. Solidi 48, 619 (1971)

    Article  ADS  Google Scholar 

  14. A. Hoser, U. Köbler, Acta Phys. Pol. A 127, 350 (2015)

    Article  ADS  Google Scholar 

  15. Y.S. Touloukian, E.H. Byco, Thermophysical Properties of Matter (Specific Heat of Metallic Elements and Alloys, NewYork, 1970)

    Google Scholar 

  16. Ch. Enss, S. Hunklinger, Low Temperature Physics (Springer, Berlin, 2005)

    MATH  Google Scholar 

  17. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005)

    MATH  Google Scholar 

  18. N.E. Phillips, Phys. Rev. 114, 676 (1959)

    Article  ADS  Google Scholar 

  19. G. Seidel, P.H. Keesom, Phys. Rev. 112, 1083 (1958)

    Article  ADS  Google Scholar 

  20. C.A. Bryant, P.H. Keesom, Phys. Rev. 123, 491 (1961)

    Article  ADS  Google Scholar 

  21. F. Steglich, J. Phys. Chem. Solids 50, 225 (1989)

    Article  ADS  Google Scholar 

  22. W. Schlabitz, J. Baumann, B. Pollit, U. Rauchschwalbe, H.M. Mayer, U. Ahlheim, C.D. Bredl, Z. Physik B 62, 171 (1986)

    Article  ADS  Google Scholar 

  23. U. Rauchschwalbe, Physica 147B, 1 (1987)

    Google Scholar 

  24. T.T.M. Palstra, A.A. Menovsky, J. van den Berg, A.J. Dirkmaat, P.H. Kes, G.J. Nieuwenhuys, J.A. Mydosh, Phys. Rev. Lett. 55, 2727 (1985)

    Article  ADS  Google Scholar 

  25. U. Köbler, Int. J. Thermo. 23, 147 (2020)

    Article  Google Scholar 

  26. F. Steglich, C.D. Bredl, W. Lieke, U. Rauchschwalbe, G. Sparn, Physica 126B, 82 (1984)

    Google Scholar 

  27. W. Buckel, R. Kleiner, Supraleitung (WILEY-VCH, Weinheim, 2013)

    Google Scholar 

  28. T.F. Stromberg, C.A. Swenson, Phys. Rev. Lett. 9, 370 (1962)

    Article  ADS  Google Scholar 

  29. U. Köbler, A. Hoser, Experimental Studies of Boson Fields in Solids (World Scientific, Singapore, 2018)

    Book  MATH  Google Scholar 

  30. F. London, H. London, Z. Physik 96, 359 (1935)

    Article  ADS  Google Scholar 

  31. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I am the only responsible author. The munuscript is my own work.

Corresponding author

Correspondence to Ulrich Köbler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köbler, U. On the Difference Between Type I and Type II Superconductors. J Low Temp Phys 213, 51–69 (2023). https://doi.org/10.1007/s10909-023-02991-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02991-1

Keywords

Navigation