Skip to main content
Log in

Hydrostatic Pressure Effect on the Thermodynamic Properties of Quantum Wire Under a Crossed Electromagnetic Field

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, a GaAs quantum wire is considered with a semi-parabolic lateral confinement potential in the presence of a crossed electromagnetic field with the inclusion of Rashba SOI. The effects of pressure on thermodynamic properties have been studied. To this end, first, the eigenenergies for the system have been calculated considering Rashba spin effects under electric and magnetic fields. Then a numerical analysis is done to derive the partition function and obtain the system's thermodynamic properties. The results show that at low temperatures, all four thermodynamic properties don’t show much effect due to pressure. It is found that entropy increases with increasing hydrostatic pressure, whereas pressure affects mean energy and free energy in a different manner. A peak structure is observed in specific heat as a function of temperature where the peak position depends on hydrostatic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.M. Lieber, One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun. 107, 607–616 (1998). https://doi.org/10.1016/s0038-1098(98)00209-9

    Article  ADS  Google Scholar 

  2. G.A. Prinz, Magnetoelectronics. Science 282, 1660–1663 (1998). https://doi.org/10.1126/science.282.5394.1660

    Article  Google Scholar 

  3. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003). https://doi.org/10.1002/adma.200390087

    Article  Google Scholar 

  4. A. Martinez-Gil, A. Rota, T. Maroutian, B. Bartenlian, P. Beauvillain, E. Moyen, M. Hanbücken, Nano-patterned silicon surfaces for the self-organised growth of metallic nanostructures. Superlattices Microstruct. 36, 235–243 (2004). https://doi.org/10.1016/j.spmi.2004.08.006

    Article  ADS  Google Scholar 

  5. A.L. Fernandes Cauduro, L.H. Hess, D.F. Ogletree, J.W. Schwede, A.K. Schmid, Tailoring low energy electron absorption via surface nano-engineering of cesiated chromium films. Appl. Phys. Lett. 115, 071602 (2019). https://doi.org/10.1063/1.5099115

    Article  ADS  Google Scholar 

  6. S. Axelsson, Ee.B. Campbell, L.M. Jonsson, J. Kinaret, S.W. Lee, Y.W. Park, M. Sveningsson, Theoretical and experimental investigations of three-terminal carbon nanotube relays. New J. Phys. 7, 245–245 (2005). https://doi.org/10.1088/1367-2630/7/1/245

    Article  ADS  Google Scholar 

  7. C. Somaschini, S. Bietti, N. Koguchi, S. Sanguinetti, Coupled quantum dot–ring structures by droplet epitaxy. Nanotechnology 22, 185602 (2011). https://doi.org/10.1088/0957-4484/22/18/185602

    Article  ADS  Google Scholar 

  8. M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang, Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004). https://doi.org/10.1126/science.1100999

    Article  ADS  Google Scholar 

  9. J.D. Sau, S. Tewari, S. Das Sarma, Universal quantum computation in a semiconductor quantum wire network. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.82.052322

    Article  Google Scholar 

  10. M. Sundaram, S.A. Chalmers, P.F. Hopkins, A.C. Gossard, New quantum structures. Science 254, 1326–1335 (1991). https://doi.org/10.1126/science.254.5036.1326

    Article  ADS  Google Scholar 

  11. J. Adamowski, A. Kwaśniowski, B. Szafran, LO-phonon-induced screening of electron–electron interaction in D-centres and quantum dots. J. Phys.: Condens. Matter 17, 4489–4500 (2005). https://doi.org/10.1088/0953-8984/17/28/008

    Article  ADS  Google Scholar 

  12. M. Ciurla, J. Adamowski, B. Szafran, S. Bednarek, Modelling of confinement potentials in quantum dots. Physica E 15, 261–268 (2002). https://doi.org/10.1016/s1386-9477(02)00572-6

    Article  ADS  Google Scholar 

  13. W. Xie, Investigation of D-centers confined by spherical quantum dots. Physica Status Solidi (b). 245, 101–105 (2008). https://doi.org/10.1002/pssb.200743116

    Article  ADS  Google Scholar 

  14. D.C. Banerjee, Review synthesis of conducting nanowires. J. Mater. Sci. 37, 4261–4271 (2002). https://doi.org/10.1023/A:1020663731437

    Article  ADS  Google Scholar 

  15. E.I. Rashba, Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Soviet Phys. Solid State. 2, 1109 (1960)

    Google Scholar 

  16. G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955). https://doi.org/10.1103/physrev.100.580

    Article  ADS  MATH  Google Scholar 

  17. G. Engels, J. Lange, Th. Schäpers, H. Lüth, Experimental and theoretical approach to spin splitting in modulation-dopedInxGa1−xAs/InP quantum wells for B→0. Phys. Rev. B 55, R1958–R1961 (1997). https://doi.org/10.1103/physrevb.55.r1958

    Article  ADS  Google Scholar 

  18. T. Koga, J. Nitta, T. Akazaki, H. Takayanagi, Rashba spin-orbit coupling probed by the weak antilocalization analysis inInAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. Phys. Rev. Lett. (2002). https://doi.org/10.1103/physrevlett.89.046801

    Article  Google Scholar 

  19. Priyanka, R. Sharma, M. Kumar, Effect of hydrostatic pressure and temperature on the ballistic conductance under the influence of Rashba spin-orbit coupling, Physica B: Condensed Matter. 648 (2023) 414402. https://doi.org/10.1016/j.physb.2022.414402.

  20. A.J. Read, R.J. Needs, K.J. Nash, L.T. Canham, P.D.J. Calcott, A. Qteish, First-principles calculations of the electronic properties of silicon quantum wires. Phys. Rev. Lett. 69, 1232–1235 (1992). https://doi.org/10.1103/physrevlett.69.1232

    Article  ADS  Google Scholar 

  21. R. Khordad, Simultaneous effects of electron–electron interactions, Rashba spin-orbit interaction and magnetic field on susceptibility of quantum dots. J. Magn. Magn. Mater. 449, 510–514 (2018). https://doi.org/10.1016/j.jmmm.2017.10.085

    Article  ADS  Google Scholar 

  22. S.A. Tarasenko, N.S. Averkiev, Interference of spin splittings in magneto-oscillation phenomena in two-dimensional systems. J. Exp. Theor. Phys. Lett. 75, 552–555 (2002). https://doi.org/10.1134/1.1500719

    Article  Google Scholar 

  23. S. Dahiya, S. Lahon, R. Sharma, Effects of temperature and hydrostatic pressure on the optical rectification associated with the excitonic system in a semi-parabolic quantum dot. Physica E: Low-Dimens. Syst. Nanostruct. 118, 113918 (2020). https://doi.org/10.1016/j.physe.2019.113918

    Article  Google Scholar 

  24. R. Khordad, Optical properties of quantum wires: Rashba effect and external magnetic field. J. Lumin. 134, 201–207 (2013). https://doi.org/10.1016/j.jlumin.2012.08.047

    Article  Google Scholar 

  25. M. Kumar, S. Lahon, P.K. Jha, M. Mohan, Energy dispersion and electron g-factor of quantum wire in external electric and magnetic fields with Rashba spin orbit interaction. Superlattices Microstruct. 57, 11–18 (2013). https://doi.org/10.1016/j.spmi.2013.01.007

    Article  ADS  Google Scholar 

  26. R. Khordad, H.R. Rastegar Sedehi, Low temperature behavior of thermodynamic properties of 1D quantum wire under the Rashba spin-orbit interaction and magnetic field. Solid State Commun. 269, 118–124 (2018). https://doi.org/10.1016/j.ssc.2017.10.018

    Article  ADS  Google Scholar 

  27. Y. Karaaslan, B. Gisi, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Rashba spin-orbit coupling effects on the optical properties of double quantum wire under magnetic field. Superlattices Microstruct. 93, 32–39 (2016). https://doi.org/10.1016/j.spmi.2016.02.043

    Article  ADS  Google Scholar 

  28. D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Thermodynamics of mono-layer quantum wires with spin-orbit interaction. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12102-3

    Article  Google Scholar 

  29. R. Khordad, H.R.R. Sedehi, Thermodynamic properties of a double ring-shaped quantum dot at low and high temperatures. J. Low Temp. Phys. 190, 200–212 (2017). https://doi.org/10.1007/s10909-017-1831-x

    Article  ADS  Google Scholar 

  30. R. Khordad, Ar. Firoozi, H.R.R. Sedehi, Simultaneous effects of temperature and pressure on the entropy and the specific heat of a three-dimensional quantum wire: tsallis formalism. J. Low Temp. Phys. 202, 185–195 (2020). https://doi.org/10.1007/s10909-020-02536-w

    Article  ADS  Google Scholar 

  31. P. Başer, I. Altuntas, S. Elagoz, The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well. Superlattices Microstruct. 92, 210–216 (2016). https://doi.org/10.1016/j.spmi.2015.12.010

    Article  ADS  Google Scholar 

  32. P. Baser, H.D. Karki, I. Demir, S. Elagoz, The hydrostatic pressure and temperature effects on the binding energy of magnetoexcitons in cylindrical quantum well wires. Superlattices Microstruct. 63, 100–109 (2013). https://doi.org/10.1016/j.spmi.2013.08.021

    Article  ADS  Google Scholar 

  33. S. Debald, B. Kramer, Rashba effect and magnetic field in semiconductor quantum wires. Phys. Rev. B (2005). https://doi.org/10.1103/physrevb.71.115322

    Article  Google Scholar 

  34. A.M. Babayev, Ö. Mercan, S. Tez, Electron Lande g-factor in GaAs/Al Ga1−As quantum wires. Physica E 41, 345–348 (2009). https://doi.org/10.1016/j.physe.2008.06.030

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PK, SA, and YG contributed to Methodology, Software, Validation, Formal analysis, Data Curation, Writing—Original Draft, Conceptualization, Formal analysis, Writing—Review & Editing, and Visualization. Priyanka and RS contributed to Resources, Investigation, Supervision, Writing—Review & Editing, and Project administration.

Corresponding author

Correspondence to Rinku Sharma.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosla, P., Arora, S., Gupta, Y. et al. Hydrostatic Pressure Effect on the Thermodynamic Properties of Quantum Wire Under a Crossed Electromagnetic Field. J Low Temp Phys 213, 92–106 (2023). https://doi.org/10.1007/s10909-023-02990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02990-2

Keywords

Navigation