Skip to main content
Log in

Scattering- and Binding Properties of Two 133Cs Atoms in Free Space and in an Ultracold, Low-Dense 133Cs Vapor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The scattering- and bound-state properties of two 133Cs atoms, in free space as well as in low-dense Cs vapor, are calculated for both electronic singlet and triplet states. In free space, standard scattering theory is used; specifically, the Lippmann–Schwinger t-matrix equation is solved by a matrix-inversion technique. The output is the phase shifts, from which the corresponding (total, viscosity, [complex] spin-exchange, and average) cross sections are computed. In the vapor, a generalized scattering theory is invoked, the key equation being the Galitskii–Migdal–Feynman T-matrix equation. This is solved by the same technique to obtain the cross sections in the medium. Likewise, the t- and T-matrix equations are solved for negative definite energy eigenvalues—again, by matrix inversion, albeit after symmetrizing the kernel in the integral equation involved—to determine the respective binding energies of the Cs2 dimer in free space and in the vapor. Sharp resonance peaks, representing ‘quasi’ bound states, appear in the cross sections. In the triplet total and viscosity cross sections, quantum effects appear as undulations. The results obtained for the complex spin-exchange cross sections are particularly highlighted, because of their importance in the spectroscopy of the 133Cs2 dimer. So are the results for the binding energy of this dimer, which are important in the physics of ultracold molecules. In calculating this quantity, as many relative partial waves as necessary ( = 0–7 and 0–8 in free space and the medium, respectively) are taken into account to guarantee ‘convergence’. The role of the medium is given special attention throughout. Most of the quantities considered here are calculated for the first time; but whenever available, comparison is made with previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.J. Kerman, C. Chin, V. Vuletic, S. Chu, P.H. Leo, C.J. Williams, P.S. Juliemenne, Determination of Cs–Cs interaction parameters using feshbach spectroscopy. Moleculer Physics 85, 633–639 (2001)

    Google Scholar 

  2. J.T.M. Walraven, Atomic hydrogen: the quantum gas. Phys. World 8(7), 37–42 (1995)

    Article  Google Scholar 

  3. M. Anderson, J. Ensher, M. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)

    Article  ADS  Google Scholar 

  4. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75(9), 1687–1690 (1995)

    Article  ADS  Google Scholar 

  5. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. Van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969 (1995)

    Article  ADS  Google Scholar 

  6. E.A. Cornell, C.E. Wieman, Nobel Lecture: Bose-Einstein Condensation in a Dilute Gas - the first 70 years and some recent experiments. Rev. Mod. Phys. 74(3), 875–893 (2002)

    Article  ADS  Google Scholar 

  7. W. Ketterle, Nobel lecture: when atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74(4), 1131–1151 (2002)

    Article  ADS  Google Scholar 

  8. J.P. Braga, A.J.C. Varandas, Quantum and semi classical analysis of spin-change cross sections for the alkali diatomic molecules. J. Phys. B At. Mol. Opt. Phys. 23, 3113–3122 (1990)

    Article  ADS  Google Scholar 

  9. M. Krauss, W.J. Stevens, EJffective core potentials and accurate energy curves for Cs2 and other alkali diatomics. J. Chem. Phys. 93(6), 4236–4242 (1990)

    Article  ADS  Google Scholar 

  10. F. Xie, V.B. Sovkov, A.M. Lyyra, D. Li, S. Ingram, J. Bai, V.S. Ivanov, S. Magnier, Li. Li, Experimental investigation of the Cs 2 a Σ 3 u + triplet ground state: Multiparameter Morse long range potential analysis and molecular constants. J. Chem. Phys. 130, 051102 (2009)

    Article  ADS  Google Scholar 

  11. R.F. Bishop, H.B. Ghassib, M.R. Strayer, Low-energy he-he interactions with phenomenological potentials. J. Low Temp. Phys. 26(5/6), 669–690 (1977)

    Article  ADS  Google Scholar 

  12. H.B. Ghassib, On dimers and trimers in some helium fluids. Zeitschrift für Phyzik B – Condens. Matter 56, 91–98 (1984)

    Article  ADS  Google Scholar 

  13. R.F. Bishop, H.B. Ghassib, M.R. Strayer, Composite pairs and effective two-body scattering in a many-body medium. Phys. Rev. A 13(4), 1570–1580 (1976)

    Article  ADS  Google Scholar 

  14. H.B. Ghassib, R.F. Bishop, M.R. Strayer, A study of the Galitskii–Feynman T-matrix for LIQUID 3He. J. Low Temp. Phys. 23(3–4), 393–401 (1976)

    Article  ADS  Google Scholar 

  15. S.M. Mosameh, A.S. Sandouqa, H.B. Ghassib, B.R. Joudeh, Thermodynamic properties of 4He gas in the temperature range 4.2–10K. J. Low Temp. Phys. 175(3–4), 523–542 (2014)

    Article  ADS  Google Scholar 

  16. H.B. Ghassib, A.S. Sandouqa, B.R. Joudeh, S.M. Mosameh, Predicting quantum regimes in 4He gas from the second virial coefficient. Can. J. Phys. 92(9), 997–1001 (2014)

    Article  ADS  Google Scholar 

  17. I.F. Al-Maaitah, B.R. Joudeh, A.S. Sandouqa, H.B. Ghassib, Scattering properties of argon gas in the temperature range 87.3–120 K. Acta Phys. Pol. A 129(6), 1131–1140 (2016)

    Article  ADS  Google Scholar 

  18. A.F. Al-Maaitah, A.S. Sandouqa, B.R. Joudeh, H.B. Ghassib, Thermodynamic properties of spin-polarized 3He gas in the temperature range 1 mK–4 K from the quantum second virial coefficient. Int. J. Mod. Phys. B 31, 1–11 (2017)

    Article  Google Scholar 

  19. A.A. Al-Harazneh, A.S. Sandouqa, B.R. Joudeh, H.B. Ghassib, Scattering properties of ground-state 23Na vapor using generalized scattering theory. J. Low Temp. Phys. 192(1–2), 117–132 (2018)

    Article  ADS  Google Scholar 

  20. A.N. Akour, A.S. Sandouqa, B.R. Joudeh, H.B. Ghassib, Equation of state of 20Ne gas in the temperature-range 27–36 K. Chin. J. Phys. 56(1), 411–422 (2018)

    Article  Google Scholar 

  21. A.A.M. Al Ajaleen, A.S. Sandouqa, H.B. Ghassib, The transition from the classical to the quantum regime for rubidium-87 (87Rb) vapor in terms of the second virial coefficient and the scattering length. Can. J. Phys. 100(7), 334–343 (2022)

    Article  ADS  Google Scholar 

  22. R.B.Martin-Wells, Resonant Scattering Phase Shifts of Ultracold Cesium and Their Energy Dependence, Unpublished Doctoral Dissertation, The Pennsylvania State University, USA (2013)

  23. J.A. Coxon, P.G. Hajigeorgiou, The ground Xg+ electronic state of the cesium dimer: application of a direct potential fitting procedure, J. Chem. Phys. 132 (2010)

  24. H.O. Dickinson, M.R.H. Rudge, Total elastic scattering and spin-change cross sections for collisions between alkali atoms. J. Phys. B: At. Mol. Phys. 3, 1448–1514 (1970)

    Article  ADS  Google Scholar 

  25. A.J. Varandas, Hybrid potential function for bound diatomic molecules. Mol. Phys. 76, 129–135 (1980)

    Google Scholar 

  26. A.J. Varandas, J. Brandao, A simple semi-empirical approach to the intermolecular potential of van der waals systems. Mol. Phys. 4, 857–875 (1982)

    Article  ADS  Google Scholar 

  27. J.G. Danzl, E. Haller, M. Gustavsson, M.J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, G.C. Nägerl, Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008)

    Article  ADS  Google Scholar 

  28. C.R. Monroe, E.A. Cornell, C.A. Sackett, C.J. Myatt, C.E. Wieman, Measurement of Cs–Cs elastic scattering at T = 30 µK. Phys. Rev. Lett. 70, 414–417 (1993)

    Article  ADS  Google Scholar 

  29. S.P. Dmitriev, N.A. Dovator, V.A. Kartoshkin, Spin Exchange upon collision of two cesium atoms in the ground state. Tech. Phys. 60(6), 826–829 (2014)

    Article  Google Scholar 

  30. B.J. Verhaar, K. Gibble, S. Chu, Cold collision properties derived from frequency shifts in a cesium fountain. Phys. Rev. A 48, R3429 (1993)

    Article  ADS  Google Scholar 

  31. R. Landau, Quantum Mechanics II, 2nd edn. (Wiley, New York, 1996)

    MATH  Google Scholar 

  32. J. Mathews, R.L. Walker, Mathematical Methods of Physics (Adison-Wesley, New York, 1969)

    MATH  Google Scholar 

  33. S.N. Ali, The Helium-Helium Interaction in Vacuum: A Reconsideration. Unpublished Masters Thesis, The University of Jordan, Amman, Jordan (1997)

  34. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  35. H.T. Stoof, M. Bijlsma, M. Houbiers, Theory of interacting quantum gases. J. Res. Nat. Inst. Stand. Technol. 101(4), 443–455 (1996)

    Article  Google Scholar 

  36. B.R. Joudeh, A.S. Sandouqa, H.B. Ghassib, M.K. Al-Sugheir, 3He–3He and 4He–4He cross sections in matter at low temperature. J. Low Temp. Phys. 161(3–4), 348–366 (2010)

    Article  ADS  Google Scholar 

  37. C. Kittel, H. Kroemer, Thermal Physics (Freeman, New York, 1980)

    Google Scholar 

  38. J.J. Sakurai, Advanced Quantum Mechanics, 2nd edn. (Addison-Wesley, New York, 1987)

    Google Scholar 

  39. T.K. Lim, S.Y. Larsen, The ramsauer-townsend effect in molecular systems of electron-spin-polarized hydrogen and helium and their isotopes. J. Chem. Phys. 74, 4997 (1981)

    Article  ADS  Google Scholar 

  40. M. Bouledroua, T.H. Zerguini, Self-diffusion properties of neutral monatomic alkali–metal plasmas. Phys. Plasmas 9(10), 4348–4353 (2002)

    Article  ADS  Google Scholar 

  41. R. Cote, A. Dalgarno, M.J. Jamieson, Elastic scattering of two 7Li atoms. Phys. Rev. A 50(1), 399 (1994)

    Article  ADS  Google Scholar 

  42. S.J.J.F. Kokkelmans, B.J. Verhaar, K. Gibble, Prospects for Bose–Einstein condensation in cesium. Phys. Rev. Lett. 81(5), 951–954 (1998)

    Article  ADS  Google Scholar 

  43. C. Baumgarten, B. Braun, M. Capiluppi, G. Ciullo, B.F. Dalpiaz, H. Kolster, P. Lenisa, H. Marukyan, A. Nass, D. Reggiani, M. Stancari, E. Steffens, First measurement of the hydrogen spin-exchange collision cross section in the low temperature region. Eur. Phys. J. 48, 343–350 (2008)

    ADS  Google Scholar 

  44. V.A. Kartoshkin, Complex spin-exchange cross sections in collisions of rubidium isotopes in the ground state. Opt. Spectrosc. 119(4), 594–598 (2015)

    Article  ADS  Google Scholar 

  45. B. Verhaar, K. Gibble, S. Chu, Cold-collision properties derived from frequency shifts in a cesium fountain. Phys. Rev. A 48, R3429–R3432 (1993)

    Article  ADS  Google Scholar 

  46. M. Arndt, M. Ben Dahan, D. Guéry-Odelin, M.W. Reynolds, J. Dalibard, Observation of a zero-energy resonance in Cs–Cs collisions. Phys. Rev. Lett. 79, 625–628 (1997)

    Article  ADS  Google Scholar 

  47. D. Guéry-Odelin, J. Söding, P. Desbiolles, J. Dalibara, Strong evaporative cooling of a trapped cesium gas. Phys. Rev. 2(8), 324–329 (1988)

    Google Scholar 

  48. M.J. Jamieson, A. Dalgarno, J.N. Yukich, Elastic scattering of hydrogen atoms at low temperatures. Phys. Rev. A 46, 6956 (1992)

    Article  ADS  Google Scholar 

  49. V.A. Kartoshkin, Complex cross sections for the spin exchange between Cs and Rb alkali atoms. Atom. Mol. Phys. 79(1), 26–31 (1995)

    Google Scholar 

  50. V. Vuletic, C. Chin, A.J. Kerman, S. Chu, Degenerate raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett. 81(26), 5768–5771 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Ayman S. Sandouqa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghassib, H.B., Alkurdi, A.M. & Sandouqa, A.S. Scattering- and Binding Properties of Two 133Cs Atoms in Free Space and in an Ultracold, Low-Dense 133Cs Vapor. J Low Temp Phys 213, 1–27 (2023). https://doi.org/10.1007/s10909-023-02987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02987-x

Keywords

Navigation