Skip to main content
Log in

Comparative Study of Structural, Electrical, and Mechanical Properties of (Tl, Hg)-1223 High Temperature Superconducting Phase Substituted by Lead Oxide and Lead Dioxide

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

To compare between the effect of partial substitution of lead ions (Pb4+ and Pb2+) at thallium (Tl) site in Tl0.8-xHg0.2PbxBa2Ca2Cu3O9−δ superconductor; two different compounds, lead (II) oxide (PbO) and lead (IV) oxide (PbO2), were used for the synthesis of the superconducting samples. Samples with nominal compositions Tl0.8-xHg0.2PbxBa2Ca2Cu3O9−δ, with x \(=\) 0.00, 0.05, 0.10, 0.15, and 0.20, were synthesized via solid state reaction technique. The x-ray diffraction (XRD) results showed that the partial substitution of both lead ions has not affected the tetragonal structure. Moreover, the volume fraction was increased from 75.95% to 90.38% and 89.41% as x increased up to 0.20 for PbO and PbO2 substitutions, respectively. The scanning electron microscopy (SEM) images demonstrated better grain connectivity and rectangular-shaped plates, supporting the phase formation of (Tl,Hg)-1223. The energy-dispersive x-ray (EDX) analysis revealed good agreement between the nominal and real compositions. Moreover, the elemental composition and oxidation states were proved by x-ray photoelectron spectroscopy (XPS). Both the superconducting transition temperature (Tc) and critical current (Jc) showed enhancement at x \(=\) 0.5 and 0.1 for PbO and PbO2 substituted samples, respectively. Vickers microhardness (Hv) measurements were used to examine the mechanical properties of the composites under a range of applied loads (0.49–9.8 N). All the prepared composites revealed the normal indentation size effect. The proportional sample resistance model proved to be the best model for interpreting the experimental data for the prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. E.K. Al-Shakarchi, A.I. Al-Janabi, J. Supercond. Nov. Magn. 33, 379 (2020). https://doi.org/10.1007/s10948-019-05220-7

    Article  Google Scholar 

  2. Z.Z. Sheng, A.M. Hermann, Nature 332, 55 (1988). https://doi.org/10.1038/332055a0

    Article  ADS  Google Scholar 

  3. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Nature 363, 56 (1993). https://doi.org/10.1038/363056a0

    Article  ADS  Google Scholar 

  4. M.A. Rahman, M.Z. Rahaman, M.N. Samsuddoha, Am. J. Phys. Appl. 3, 39 (2015)

    Google Scholar 

  5. I. Metskhvarishvili, T.E. Lobzhanidze, G.N. Dgebuadze, B.G. Bendeliani, M.R. Metskhvarishvili, M. Sh. Rusia, V.M. Gabunia, and K. Komakhidze, SG and SSR Approach in the Preparation of Precursors Influence on Superconducting Properties of Tl-1223 Superconductors (In Review, 2020). https://doi.org/10.21203/rs.3.rs-68452/v1

  6. N.S. Abed, S.J. Fathi, K.A. Jassim, S.H. Mahdi, J. Phys. Conf. Ser. 1003, 012098 (2018). https://doi.org/10.1088/1742-6596/1003/1/012098

    Article  Google Scholar 

  7. M. Anas, G.A. El-Shorbagy, J. Low Temp. Phys. 194, 183 (2019). https://doi.org/10.1007/s10909-018-2081-2

    Article  ADS  Google Scholar 

  8. A.I. Abou-Aly, N.H. Mohammed, M. Roumié, A. El Khatib, R. Awad, S.A. Nour El Dein, J. Supercond. Nov. Magn. 22, 495 (2009). https://doi.org/10.1007/s10948-009-0447-z

    Article  Google Scholar 

  9. I.C. Chang, J.Z. Liu, M.D. Lan, P. Klavins, R.N. Shelton, Chin. J. Phys. 34, 497 (1996)

    Google Scholar 

  10. A.K. Pandey, G.D. Verma, O.N. Srivastava, Physica C 306, 47 (1998). https://doi.org/10.1016/S0921-4534(98)00287-1

    Article  ADS  Google Scholar 

  11. J. Nur-Akasyah, M.G. Ranjbar, R. Abd-Shukor, Ceram. Int. 47, 31920 (2021). https://doi.org/10.1016/j.ceramint.2021.08.078

    Article  Google Scholar 

  12. J.M. Zubair-Asyraf, A.B.P. Ilhamsyah, R. Abd-Shukor, Cryogenics 105, 103011 (2020). https://doi.org/10.1016/j.cryogenics.2019.103011

    Article  Google Scholar 

  13. M. Mumtaz, N.A. Khan, F. Ashraf, J. Supercond. Nov. Magn. 24, 1547 (2011). https://doi.org/10.1007/s10948-010-1051-y

    Article  Google Scholar 

  14. R. Shipra, J.C. Idrobo, A.S. Sefat, Supercond. Sci. Technol. 28, 115006 (2015). https://doi.org/10.1088/0953-2048/28/11/115006

    Article  ADS  Google Scholar 

  15. H.M. Shao, C.C. Lam, P.C.W. Fung, X.S. Wu, J.H. Du, G.J. Shen, J.C.L. Chow, S.L. Ho, K.C. Hung, X.X. Yao, Phys. C 246, 207 (1995). https://doi.org/10.1016/0921-4534(95)00153-0

    Article  ADS  Google Scholar 

  16. T.-M. Chen, J.S. Ho, Phys. C 282–287, 915 (1997). https://doi.org/10.1016/S0921-4534(97)00559-5

    Article  ADS  Google Scholar 

  17. J. Kane, K.-W. Ng, D. Moecher, Phys. C 294, 176 (1998). https://doi.org/10.1016/S0921-4534(97)01696-1

    Article  ADS  Google Scholar 

  18. S. Ezzatpour, L. Sharifzadegan, F. Sarvari, H. Sedghi, Phys. C Supercond. Appl. 549, 150 (2018). https://doi.org/10.1016/j.physc.2018.02.023

    Article  ADS  Google Scholar 

  19. A.K. Jassim, F.S. Abed, J. Non-Oxide Glasses 11, 41 (2019)

    Google Scholar 

  20. J. Nur-Akasyah, A.B.P. Ilhamsyah, R. Abd-Shukor, Ceram. Int. 46, 18413 (2020). https://doi.org/10.1016/j.ceramint.2020.04.210

    Article  Google Scholar 

  21. M.G. Ranjbar, M. Ghoranneviss, R. Abd-Shukor, Appl. Phys. A 124, 456 (2018). https://doi.org/10.1007/s00339-018-1838-4

    Article  ADS  Google Scholar 

  22. H. AbuHlaiwa, H. Basma, M. Rekaby, M. Roumie, R. Awad, J. Low Temp. Phys. 198, 26 (2020). https://doi.org/10.1007/s10909-019-02245-z

    Article  ADS  Google Scholar 

  23. R. Awad, A.I. Abou-Aly, I.H. Ibrahim, W. Abdeen, Solid State Commun. 146, 92 (2008). https://doi.org/10.1016/j.ssc.2007.12.029

    Article  ADS  Google Scholar 

  24. A.I. Abou-Aly, R. Awad, M. Kamal, M. Anas, J. Low Temp. Phys. 163, 184 (2011). https://doi.org/10.1007/s10909-010-0339-4

    Article  ADS  Google Scholar 

  25. A. Abou Aly, I. Ibrahim, R. Awad, A. El-Harizy, A. Khalaf, J. Supercond. Novel Magn. 23(7), 1325–1332 (2010). https://doi.org/10.1007/s10948-010-0776-y

    Article  Google Scholar 

  26. L. Lutterotti, Acta Crystallogr. Sect. A Found. Crystallogr. 56(s1), s54–s54 (2000). https://doi.org/10.1107/S0108767300021954

    Article  Google Scholar 

  27. A. Srour, R. Awad, W. Malaeb, M.M.E. Barakat, J. Low Temp. Phys. 189(3–4), 217–229 (2017). https://doi.org/10.1007/s10909-017-1806-y

    Article  ADS  Google Scholar 

  28. A. Kamar, A. Srour, M. Roumié, W. Malaeb, R. Awad, A. Khalaf, Appl. Phys. A 127, 579 (2021). https://doi.org/10.1007/s00339-021-04707-2

    Article  ADS  Google Scholar 

  29. R. Awad, N.S. Aly, I.H. Ibrahim, A.I. Abou-Aly, A.I. Saad, Phys. C 341–348, 685 (2000). https://doi.org/10.1016/S0921-4534(00)00650-X

    Article  ADS  Google Scholar 

  30. M.M.E. Barakat, D. El-Said Bakeer, A.-H. Sakr, J. Taibah Univ. Sci. 14(1), 640–652 (2020). https://doi.org/10.1080/16583655.2020.1761676

    Article  Google Scholar 

  31. A. Laheeb, K. Mohammed, A. Jasim, Ibn AL-Haitham J. Pure Appl. Sci. 31(3), 26–32 (2018). https://doi.org/10.30526/31.3.2024

    Article  Google Scholar 

  32. A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, J. Alloy. Compd. 481, 462 (2009). https://doi.org/10.1016/j.jallcom.2009.02.156

    Article  Google Scholar 

  33. J. Nur-Akasyah, Int. J. Electrochem. Sci. 16, 2 (2021). https://doi.org/10.20964/2021.10.14

    Article  Google Scholar 

  34. J.L. Tallon, Oxygen in high-Tc cuprate superconductors, in Frontiers in Superconducting Materials. ed. by A.V. Narlikar (Springer-Verlag, Berlin/Heidelberg, 2005), pp.295–330. https://doi.org/10.1007/3-540-27294-1_7

    Chapter  Google Scholar 

  35. N. El Ghouch, R. Al-Oweini, K. Habanjar, R. Awad, J. Phys. Chem. Solids 151, 109807 (2021). https://doi.org/10.1016/j.jpcs.2020.109807

    Article  Google Scholar 

  36. J.L. Jorda, Th. Hopfinger, M. Couach, P. Pugnat, C. Bertrand, Ph. Galez, J. Supercond. 11, 87 (1998). https://doi.org/10.1023/A:1022602517307

    Article  ADS  Google Scholar 

  37. R.J. McNeely, J.A. Belot, T.J. Marks, Y. Wang, V.P. Dravid, M.P. Chudzik, C.R. Kannewurf, J. Mater. Res. 15, 1083 (2000). https://doi.org/10.1557/JMR.2000.0156

    Article  ADS  Google Scholar 

  38. Z.L. Du, P.C.W. Fung, J.C.L. Chow, Y.Y. Luo, Q.Y. Li, J. Supercond. 9, 43 (1996). https://doi.org/10.1007/BF00728423

    Article  ADS  Google Scholar 

  39. G. Greczynski, L. Hultman, Progress Mater. Sci. 107, 100591 (2020). https://doi.org/10.1016/j.pmatsci.2019.100591

    Article  Google Scholar 

  40. T. Suzuki, M. Nagoshi, Y. Fukuda, S. Nakajima, M. Kikuchi, Y. Syono, M. Tachiki, Supercond. Sci. Technol. 7, 817 (1994). https://doi.org/10.1088/0953-2048/7/11/007

    Article  ADS  Google Scholar 

  41. P.E. Lippens, L. Aldon, J. Olivier-Fourcade, J.C. Jumas, A. Gheorghiu de la Rocque, C. Sénémaud, J. Phys. Chem. Solids 60, 1745 (1999). https://doi.org/10.1016/S0022-3697(99)00022-0

    Article  ADS  Google Scholar 

  42. K. Tanaka, A. Iyo, N. Terada, K. Tokiwa, S. Miyashita, Y. Tanaka, T. Tsukamoto, S.K. Agarwal, T. Watanabe, H. Ihara, Phys. Rev. B 63, 064508 (2001). https://doi.org/10.1103/PhysRevB.63.064508

    Article  ADS  Google Scholar 

  43. X. Zheng, L. Zhang, X. Wang, Y. Qing, J. Chen, Y. Wu, S. Deng, L. He, F. Liao, Y. Wang, J. Geng, J. Sun, G. Li, L. Liu, J. Lin, Inorg. Chem. Front. 7, 3561 (2020). https://doi.org/10.1039/D0QI00828A

    Article  Google Scholar 

  44. S. Kambe, Y. Murakoshi, R. Sekine, M. Kawai, K. Yamada, S. Ohshima, K. Okuyama, Phys. C 190, 139 (1991). https://doi.org/10.1016/S0921-4534(05)80228-X

    Article  ADS  Google Scholar 

  45. P. Kulkarni, S. Mahamuni, M. Chandrachood, I.S. Mulla, A.P.B. Sinha, A.S. Nigavekar, S.K. Kulkarni, J. Appl. Phys. 67, 3438 (1990). https://doi.org/10.1063/1.345330

    Article  ADS  Google Scholar 

  46. S. Marik, A.J. Dos santos-Garcia, C. Labrugere, E. Morán, O. Toulemonde, M.A. Alario-Franco, 1212-Molybdo-Cuprates; effect of oxygenation in the structure, properties and electronic states. MRS Proc. (2014). https://doi.org/10.1557/opl.2014.414

    Article  Google Scholar 

  47. J. Jiang, X. Liu, J. Han, K. Hu, J. Chen, Processes 9, 680 (2021). https://doi.org/10.3390/pr9040680

    Article  Google Scholar 

  48. Z.H. Gan, G.Q. Yu, B.K. Tay, C.M. Tan, Z.W. Zhao, Y.Q. Fu, J. Phys. D: Appl. Phys. 37, 81 (2004). https://doi.org/10.1088/0022-3727/37/1/013

    Article  ADS  Google Scholar 

  49. V. Gayathri, E.P. Santanu Bera, T.G. Amaladass, R.P. Kumary, A. Mani, Phys. Chem. Chem. Phys. 23(22), 12822–12833 (2021). https://doi.org/10.1039/D1CP01262B

    Article  Google Scholar 

  50. M. Mahtali, S. Chamekh, J. Supercond. Nov. Magn. 24, 351 (2011). https://doi.org/10.1007/s10948-010-1008-1

    Article  Google Scholar 

  51. A.H. Ali, A.K.D. Ali, K.A. Jasim, IOP Conf. Ser. Mater. Sci. Eng. 871(1), 012079 (2020). https://doi.org/10.1088/1757-899X/871/1/012079

    Article  Google Scholar 

  52. K.A. Jasim, L.A. Mohammed, J. Phys. Conf. Ser. 1003, 012071 (2018). https://doi.org/10.1088/1742-6596/1003/1/012071

    Article  Google Scholar 

  53. A.T. Ulgen, T. Turgay, C. Terzioglu, G. Yildirim, M. Oz, J. Alloy. Compd. 764, 755 (2018). https://doi.org/10.1016/j.jallcom.2018.06.142

    Article  Google Scholar 

  54. M.A. Omar, S.J. Fathi, Res. Jet J. Anal. Invent. 2, 94 (2021)

    Google Scholar 

  55. W. Abdeen, N.H. Mohammed, R. Awad, S.A. Mahmoud, M. Hasebbo, J. Supercond. Novel Magn. 26, 623 (2013). https://doi.org/10.1007/s10948-012-1803-y

    Article  Google Scholar 

  56. A. Nasser, A. Srour, N. El Ghouch, W. Malaeb, R. Al-Oweini, R. Awad, Appl. Phys. A 126, 951 (2020). https://doi.org/10.1007/s00339-020-04083-3

    Article  ADS  Google Scholar 

  57. T.M. Katona, S.W. Pierson, Phys. C 270, 242 (1996). https://doi.org/10.1016/S0921-4534(96)00521-7

    Article  ADS  Google Scholar 

  58. J.M. Repaci, C. Kwon, X.G. Jiang, Bull. Am. Phys. Soc. 40, 445 (1995). https://doi.org/10.1103/PhysRevB.54.R9674

    Article  Google Scholar 

  59. A. Jukna, Materials 15, 4260 (2022). https://doi.org/10.3390/ma15124260

    Article  ADS  Google Scholar 

  60. A. Cigáň, G. Plesch, M. Škrátek, M. Kopčok, J. Maňka, P. Jurdák, A. Koňakovský, Open Phys. 9, 213 (2011). https://doi.org/10.2478/s11534-010-0042-8

    Article  ADS  Google Scholar 

  61. Y. Zalaoglu, E. Bekiroglu, M. Dogruer, G. Yildirim, O. Ozturk, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 2339 (2013). https://doi.org/10.1007/s10854-013-1098-1

    Article  Google Scholar 

  62. B. Sahoo, D. Behera, J. Mater. Sci. Mater. Electron. 30, 12992 (2019). https://doi.org/10.1007/s10854-019-01661-x

    Article  Google Scholar 

  63. M. Barakat, J. Supercond. Novel Magn. 30, 2945 (2017). https://doi.org/10.1007/s10948-016-3791-9

    Article  Google Scholar 

  64. H. AbuHlaiwa, H. Basma, M. Rekaby, R. Awad, Appl. Phys. A 125, 1 (2019). https://doi.org/10.1007/s00339-019-2972-3

    Article  ADS  Google Scholar 

  65. K. Sangwal, B. Surowska, Mater. Res. Innov. 7, 91 (2003). https://doi.org/10.1080/14328917.2003.11784768

    Article  Google Scholar 

  66. H.C. Ling, M.F. Yan, J. Appl. Phys. 64, 1307 (1988). https://doi.org/10.1063/1.341851

    Article  ADS  Google Scholar 

  67. W. Abdeen, N.H. Mohammed, R. Awad, S.A. Mahmoud, M. Hasebbo, J. Supercond. Nov. Magn. 26, 3235 (2013). https://doi.org/10.1007/s10948-013-2192-6

    Article  Google Scholar 

  68. M.H. El Makdah, N. El Ghouch, M.H. El-Dakdouki, R. Awad, M. Matar, Appl. Phys. A 129, 265 (2023). https://doi.org/10.1007/s00339-023-06547-8

    Article  ADS  Google Scholar 

  69. M. Anas, Chem. Phys. Lett. 742, 137033 (2020). https://doi.org/10.1016/j.cplett.2019.137033

    Article  Google Scholar 

  70. H. Li, R.C. Bradt, J. Mater. Sci. 28, 917 (1993). https://doi.org/10.1007/BF00400874

    Article  ADS  Google Scholar 

  71. J. Petrík, Arch. Metall. Mater. 61, 1819 (2016). https://doi.org/10.1515/amm-2016-0294

    Article  Google Scholar 

  72. M. Rekaby, N.H. Mohammed, M. Ahmed, A.I. Abou-Aly, Appl. Phys. A 128, 261 (2022). https://doi.org/10.1007/s00339-022-05394-3

    Article  ADS  Google Scholar 

  73. A. Srour, W. Malaeb, M. Rekaby, R. Awad, Phys. Scripta 92, 104002 (2017). https://doi.org/10.1088/1402-4896/aa86ce

    Article  ADS  Google Scholar 

  74. S. Celik, O. Ozturk, E. Coşkun, M. Sarıhan, E. Asikuzun, K. Ozturk, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 2218 (2013). https://doi.org/10.1007/s10854-013-1082-9

    Article  Google Scholar 

  75. Y. Zalaoglu, T. Turgay, A.T. Ulgen, U. Erdem, M.B. Turkoz, G. Yildirim, J. Mater. Sci. Mater. Electron. 31, 22239 (2020). https://doi.org/10.1007/s10854-020-04724-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was done in the Faculty of Science, Beirut Arab University, at the Specialized Materials Science Laboratory, Physics Department, in collaboration with the Faculty of Science at Alexandria University in Alexandria, Egypt.

Funding

The study that was submitted by the authors was not funded by any organization.

Author information

Authors and Affiliations

Authors

Contributions

RA: Suggested the point of the research. RK: Prepared the samples. MA and KH characterized the sample using XRD, EDX and XPS and analyzed the data. They prepared figures 1-10 RK and KH: Measured the electrical resistivity and IV. They prepared figures 11 and 12 RK and MA: measured the VM and analyzed the data. They prepared figures 13-20 All authors participated in writing and revising the manuscript.

Corresponding author

Correspondence to M. Anas.

Ethics declarations

Conflict of interest

The authors have no conflicting interests to disclose that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattar, R.F., Habanjar, K., Awad, R. et al. Comparative Study of Structural, Electrical, and Mechanical Properties of (Tl, Hg)-1223 High Temperature Superconducting Phase Substituted by Lead Oxide and Lead Dioxide. J Low Temp Phys 211, 166–192 (2023). https://doi.org/10.1007/s10909-023-02968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02968-0

Keywords

Navigation