Skip to main content
Log in

Low-Temperature Thermoelectric Power Behavior of Nd1 − xGdxCo2: Insights from Impurity and Spin Wave Scattering

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a detailed study of the thermoelectric power (S) of the Nd1 − xGdxCo2 system in the concentration range of 0.0 ≤  x ≤ 1.0. The evolution of negative to positive thermoelectric power with Gd doping is observed. We analyze the paramagnetic state thermoelectric power based on the density of states near the Fermi level and the broadening of the 3d band of the system. The complicated magnetic state thermoelectric power of the RCo2 system is not well understood, here we provide an explanation for the low-temperature magnetic state thermoelectric power using the Nordheim-Gorter rule with two different scattering mechanisms: impurity and spin wave. We observe a minimum for the Fermi energy as a function of Gd concentration, which is linked to the exchange integrals between the electrons and the compensation of moments for the system. Overall, our results shed light on the thermoelectric behavior of the Nd1 − xGdxCo2 system and provide insights into the physics of RCo2 compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.B. Liu, Z. Altounian, J. Phys. Condens. Matter. 18, 5503–5516 (2006)

    Article  ADS  Google Scholar 

  2. S. Belkhouane, A. Bentouaf, H. Rached, Z.A. Bouyakoub, Appl. Phy. A 127, 835 (2021)

    Article  ADS  Google Scholar 

  3. A. Bentouaf, H. Rached, A. Azzouz Rached, Energy Storage, e455 (2023)

  4. A. Benaïssa, A. Bentouaf, B. Aïssa, B. Abbar, Int J Quantum Chem. 121, e26488 (2021)

    Article  Google Scholar 

  5. T. Benmedjahed, A. Bentouafl, M. Berrahal, M. Ameri, SPIN 10, 2050020 (2020)

    Article  ADS  Google Scholar 

  6. M. Bouharkat, A. Bentouaf, R. Mebsout, Comput. Condens. Matter. 30033–2 (2020)

  7. N.H. Duc, P.E. Brommer, J.J.M. Franse, Phys. B 191, 239–247 (1993)

    Article  ADS  Google Scholar 

  8. Z.W. Ouyang, G.H. Rao, H.F. Yang, W.F. Liu, J.K. Liang, Appl. Phys. Lett. 81, 97 (2002)

    Article  ADS  Google Scholar 

  9. Z.W. Ouyang, G.H. Rao, H.F. Yang, W.F. Liu, G.Y. Liu, X.M. Feng, J.K. Liang, J. Phys. Condens. Matter. 15, 5599–5613 (2003)

    Article  ADS  Google Scholar 

  10. Y.G. Xiao, Q. Huang, Z.W. Ouyang, F.W. Wang, J.W. Lynn, J.K. Liang, G.H. Rao, Phy. Rev. B. 73, 064413 (2006)

    Article  ADS  Google Scholar 

  11. N.V. Baranov, A.A. Yermakov, A.N. Pirogov, A.V. Proshkin, S.N. Gvasaliya, A. Podlesnyak, Phy. Rev. B. 73, 104445 (2006)

    Article  ADS  Google Scholar 

  12. K. Uchima, S. Yonamine, A. Kinjyo, Y. Takaesu, M. Hedo, T. Nakama, K. Yagasaki, A.T. Burkov, J. Phys. Conf. Ser. 200, 032077 (2010)

    Article  Google Scholar 

  13. E. Gratz, R. Hauser, A. Lindbaum, M. Maikis, R. Resel, G. Schaudy, R.Z. Levitin, A.S. Markosyan, I.S. Dubenko, A. Yu Sokolov, S.W. Zochowski, J. Phys. Condens. Matter. 7, 597–610 (1995)

    Article  ADS  Google Scholar 

  14. S. Pandya, L.S. Sharath Chandra, V. Ganesan, J. Phys. D Appl. Phys. 51, 505001 (2018)

    Article  Google Scholar 

  15. J.-S. Kang, J.H. Hong, D.W. Hwang, J.I. Jeong, S.D. Choi, C.J. Yang, Y.P. Lee, C.G. Olson, K. Kang, B.I. Min, Phys. Rev. B. 46, 15689 (1992)

    Article  ADS  Google Scholar 

  16. E. Gratz, R. Resel, A.T. Burkov, E. Bauer, A.S. Markosyan, A. Galatanu, J. Phys. Condens. Matter. 7, 6687–6706 (1995)

    Article  ADS  Google Scholar 

  17. E. Gratz, H. Sassik, H. Nowtny, J. Phys. F Metal Phys. 11, 429 (1981)

    Article  ADS  Google Scholar 

  18. T. Nakama, A.T. Burkov, M. Hedo, H. Niki, K. Yagasaki, J. Magn. Magn. Mater. 226–230, 671–673 (2001)

    Article  ADS  Google Scholar 

  19. L.S. Sharath Chandra, A. Lakhani, D. Jain, S. Pandya, P.N. Vishwakarma, M. Gangrade, V. Ganesan, Rev. Sci. Instrum. 79, 103907 (2008)

    Article  ADS  Google Scholar 

  20. S. Pandya, L.S. SharathChandra, P.N. Vishwakarma, V. Ganesan, J. Phys. Conf. Ser. 150, 042160 (2009)

    Article  Google Scholar 

  21. Z.W. Ouyang, F.W. Wang, Q. Huang, W.F. Liu, Y.G. Xiao, J.W. Lynn, J.K. Liang, G.H. Rao, Phys. Rev. B. 71, 064405 (2005)

    Article  ADS  Google Scholar 

  22. Y.G. Xiao, Q. Huang, Z.W. Ouyang, F.W. Wang, J.W. Lynn, J.K. Liang, G.H. Rao, J. Alloys Comps. 420, 29–33 (2006)

    Article  Google Scholar 

  23. U. Atzmony, M.P. Dariel, G. Dublon, Phys. Rev. B. 14, 3713–3721 (1976)

    Article  ADS  Google Scholar 

  24. E. Gratz, Physica B. 237–238, 470–473 (1997)

    Article  ADS  Google Scholar 

  25. A.T. Burkov, E. Bauer, E. Gratz, R. Resel, T. Nakama, K. Yagasaki, Phy. Rev. B. 78, 035101 (2008)

    Article  ADS  Google Scholar 

  26. R.D. Barnard, Thermoelectricity in metals and alloys (Taylor & Francis ltd., London, 1972)

    Google Scholar 

  27. A.M. Guenault, J. Phys. F Metal Phys. 2, 316 (1972)

    Article  ADS  Google Scholar 

  28. M.A. Laguna-Marco, J. Chaboy, C. Piquer, Phy. Rev. B. 77, 125132 (2008)

    Article  ADS  Google Scholar 

  29. G.J. Primavesi, K.N.R. Taylor, I.R. Harris, J. De Physique. 32, C1-661 (1971)

    Article  Google Scholar 

  30. M. Alegria Feio, J.M. Machado da Silva, J.B. Oliveira, Solid State Commun. 77, 605–607 (1991)

    Article  ADS  Google Scholar 

  31. J.B. Greene, M.F. Manning, Phy. Rev. B. 63, 203 (1942)

    Article  ADS  Google Scholar 

  32. M.A. Laguna-Marco, C. Piquer, J. Chaboy, Phy. Rev. B. 80, 144419 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Dr. P. Chaddah and Prof. Ajay Gupta for their support and encouragement, as well as the staff of the low-temperature and cryogenics laboratory at UGC DAE CSR for their technical assistance. Additionally, we acknowledge the support of the LTHM Project by the DST, India, as well as the DST and CSIR for the fellowship granted to SP.

Author information

Authors and Affiliations

Authors

Contributions

Dr Swati Pandya synthesized the samples, collected the data , analysed the data and prepared the main manuscript . Dr V Ganesan and Dr L S Sharath Chandra has contributed in data collection and concept.

Corresponding author

Correspondence to Swati Pandya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, S., Chandra, L.S.S. & Ganesan, V. Low-Temperature Thermoelectric Power Behavior of Nd1 − xGdxCo2: Insights from Impurity and Spin Wave Scattering. J Low Temp Phys 212, 69–78 (2023). https://doi.org/10.1007/s10909-023-02965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02965-3

Keywords

Navigation