Skip to main content
Log in

Thin \(^4\)He Films on Alkali Substrates: Where Do \(^3\)He Atoms Bind?

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The possible occurrence of bound states of \(^3\)He atoms in the vicinity of a weakly attractive substrate coated with a thin superfluid \(^4\)He film is investigated by first principle computer simulations. No evidence is seen of such bound states, even in the case of the weakest substrate, i.e., Cs; a single \(^3\)He atom always binds to the free \(^4\)He surface, regardless of the thickness of the \(^4\)He film. A comparison of \(^4\)He density profiles computed in this work with those yielded by the Density Functional approach that led to the prediction of \(^3\)He bound states near the substrate shows that the latter may not have afforded a sufficiently accurate structural description of the adsorbed \(^4\)He film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The parameters for this particular potential are taken from Table 1 of Ref. [5]. They are different from those reported in Table 1 of Ref. [22].

  2. It should be noted that the methodology utilized in this work allows one to observe, in a computer simulation, a thin film of pure \(^4\)He on a Cs substrate “bead up” and form a single droplet, at the temperature considered in this study. However, this requires that systems of sufficiently large size be studied. For \(N \lesssim 200\) and/or at low coverage, periodic boundary conditions stabilize a uniform thin film.

References

  1. A.F. Andreev, Surface tension of weak helium isotope solutions. Sov. Phys. JETP 23(5), 939 (1966)

    ADS  Google Scholar 

  2. K.R. Atkins, Y. Narahara, Surface tension of liquid \(^{4}{\rm He}\). Phys. Rev. 138, A437 (1965). https://doi.org/10.1103/PhysRev.138.A437

    Article  ADS  Google Scholar 

  3. J. Lekner, Theory of surface states of \(^3\)He atoms in liquid \(^4\)He. Philos. Mag. 22(178), 669 (1970). https://doi.org/10.1080/14786437008220937

    Article  ADS  Google Scholar 

  4. N. Pavloff, J. Treiner, \(^3\)He impurity states on liquid \(^4\)He: From thin films to the bulk surface. J. Low Temp. Phys. 83(5–6), 331 (1991). https://doi.org/10.1007/bf00683631

    Article  ADS  Google Scholar 

  5. J. Treiner, Helium mixtures on weak binding substrates. J. Low Temp. Phys. 92(1–2), 1 (1993). https://doi.org/10.1007/BF00681869

    Article  ADS  Google Scholar 

  6. D.O. Edwards, W.F. Saam, In: Progress in Low Temperature Physics, vol. VIIA, ed. by D.E. Brewer (North-Holland, Amsterdam, The Netherlands, 1978), pp. 283–369

  7. E.P. Bashkin, (He\(^3\))\(_2\), van der Waals molecular dimers in solutions of the quantum liquids He\(^3\)-He\(_{{\rm II}}\). Sov. Phys. JETP 51(1), 181 (1980)

    ADS  Google Scholar 

  8. K. Miyake, Fermi liquid theory of dilute submonolayer \(^3\)he on thin \(^4\)he ii film: Dimer bound state and cooper pairs. Prog. Theor. Phys. 69(6), 1794 (1983). https://doi.org/10.1143/PTP.69.1794

    Article  ADS  Google Scholar 

  9. Y. Carmi, E. Polturak, S.G. Lipson, Roughening transition in dilute \(^3\)He-\(^4\)He mixture crystals. Phys. Rev. Lett. 62(12), 1364 (1989). https://doi.org/10.1103/PhysRevLett.62.1364

    Article  ADS  Google Scholar 

  10. C.L. Wang, G. Agnolet, Effects of \(^3\)He impurities on the \(^4\)He solid-liquid interface. J. Low Temp. Phys. 89(3–4), 759 (1992). https://doi.org/10.1007/BF00694135

    Article  ADS  Google Scholar 

  11. K.S. Ketola, R.B. Hallock, Effect of \(^{3}{\rm He}\) on the wetting of \(^{4}{\rm He}\) to a cesium-coated substrate. Phys. Rev. Lett. 71(20), 3295 (1993). https://doi.org/10.1103/PhysRevLett.71.3295

    Article  ADS  Google Scholar 

  12. W. Draisma, M. Eggenkamp, P. Pinkse, R. Jochemsen, G. Frossati, Possible observation of the substrate state in \(^3\)He-\(^4\)He mixture films. Phys. B 194–196, 853 (1994). https://doi.org/10.1016/0921-4526(94)90756-0

    Article  ADS  Google Scholar 

  13. D. Ross, P. Taborek, J.E. Rutledge, Bound states of \(^3\)He at the helium-cesium interface. Phys. Rev. Lett. 74(22), 4483 (1995). https://doi.org/10.1103/PhysRevLett.74.4483

    Article  ADS  Google Scholar 

  14. E. Rolley, S. Balibar, C. Guthmann, P. Nozières, Adsorption of \(^3\)He on \(^4\)He crystal surfaces. Physica 210(3–4), 397 (1995). https://doi.org/10.1016/0921-4526(94)01126-L

    Article  Google Scholar 

  15. P.A. Sheldon, J.P. Vithayathil, R.B. Hallock, Experiments to search for a substrate state for \(^3\)He adjacent to surfaces in \(^3\)He-\(^4\)He mixtures. J. Low Temp. Phys. 101, 231 (1995). https://doi.org/10.1007/BF00754581

    Article  ADS  Google Scholar 

  16. P.A. Sheldon, R.B. Hallock, Absence of a substrate state for \(^{3}{\rm He}\) in a \(^3\)He-\(^4\)He bulk mixture in proximity to a strong-binding surface. Phys. Rev. B 52, 12530 (1995). https://doi.org/10.1103/PhysRevB.52.12530

    Article  ADS  Google Scholar 

  17. Z.G. Cheng, J. Beamish, In situ monitoring distribution and migration of \(^3\)He in liquid-solid \(^4\)He mixtures. Phys. Rev. Res. (2021). https://doi.org/10.1103/physrevresearch.3.023136

    Article  Google Scholar 

  18. M. Boninsegni, Bound state of a \(^3\)He atom at the interface of crystal and superfluid \(^4\)He. Res. Phys. 38, 105604 (2022). https://doi.org/10.1016/j.rinp.2022.105604

    Article  Google Scholar 

  19. F. Ancilotto, M. Barranco, F. Caupin, R. Mayol, M. Pi, Freezing of \(^4\)He and its liquid-solid interface from density functional theory. Phys. Rev. B (2005). https://doi.org/10.1103/physrevb.72.214522

    Article  Google Scholar 

  20. M. Boninsegni, M.W. Cole, F. Toigo, Helium adsorption on a lithium substrate. Phys. Rev. Lett. 83(10), 2002 (1999). https://doi.org/10.1103/PhysRevLett.83.2002

    Article  ADS  Google Scholar 

  21. R.A. Aziz, V.P.S. Nain, J.S. Carley, W.L. Taylor, G.T. McConville, An accurate intermolecular potential for helium. J. Chem. Phys. 70(9), 4330 (1979). https://doi.org/10.1063/1.438007

    Article  ADS  Google Scholar 

  22. A. Chizmeshya, M.W. Cole, E. Zaremba, Weak binding potentials and wetting transitions. J. Low Temp. Phys. 110(1/2), 677 (1998). https://doi.org/10.1023/A:1022556227148

    Article  ADS  Google Scholar 

  23. F. Mezzacapo, M. Boninsegni, Superfluidity and quantum melting of p-H\(_2\) clusters. Phys. Rev. Lett. 97(4), 045301 (2006). https://doi.org/10.1103/PhysRevLett.97.045301

    Article  ADS  Google Scholar 

  24. F. Mezzacapo, M. Boninsegni, Structure, superfluidity, and quantum melting of hydrogen clusters. Phys. Rev. A 75(3), 033201 (2007). https://doi.org/10.1103/PhysRevA.75.033201

    Article  ADS  Google Scholar 

  25. M. Boninsegni, N. Prokof’ev, B. Svistunov, Worm algorithm for continuous-space path integral Monte Carlo simulations. Phys. Rev. Lett. 96(7), 070601 (2006). https://doi.org/10.1103/PhysRevLett.96.070601

    Article  ADS  Google Scholar 

  26. M. Boninsegni, N.V. Prokof’ev, B.V. Svistunov, Worm algorithm and diagrammatic Monte Carlo: a new approach to continuous-space path integral Monte Carlo simulations. Phys. Rev. E 74(3), 036701 (2006). https://doi.org/10.1103/PhysRevE.74.036701

    Article  ADS  Google Scholar 

  27. D.M. Ceperley, Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67(2), 279 (1995). https://doi.org/10.1103/RevModPhys.67.279

    Article  ADS  Google Scholar 

  28. M. Boninsegni, S. Moroni, Population size bias in diffusion Monte Carlo. Phys. Rev. E 86(5), 056712 (2012). https://doi.org/10.1103/PhysRevE.86.056712

    Article  ADS  Google Scholar 

  29. M. Boninsegni, Phase Separation in Mixtures of Hard Core Bosons. Phys. Rev. Lett. 87(8), 087201 (2001). https://doi.org/10.1103/PhysRevLett.87.087201

    Article  ADS  Google Scholar 

  30. M. Boninsegni, Ground state phase diagram of parahydrogen in one dimension. Phys. Rev. Lett. 111(23), 235303 (2013). https://doi.org/10.1103/PhysRevLett.111.235303

    Article  ADS  Google Scholar 

  31. F. Cinti, M. Boninsegni, Classical and quantum filaments in the ground state of trapped dipolar Bose gases. Phys. Rev. A 96(7), 013627 (2017). https://doi.org/10.1103/PhysRevA.96.013627

    Article  ADS  Google Scholar 

  32. F. Cinti, M. Boninsegni, Absence of superfluidity in 2d dipolar Bose striped crystals. J. Low Temp. Phys. 196(5–6), 413 (2019). https://doi.org/10.1007/s10909-019-02209-3

    Article  ADS  Google Scholar 

  33. M. Boninsegni, Permutation sampling in path integral Monte Carlo. J. Low Temp. Phys. 141(1–2), 27 (2005). https://doi.org/10.1007/s10909-005-7513-0

    Article  ADS  Google Scholar 

  34. M. Boninsegni, L. Szybisz, Structure and energetics of helium films on alkali substrates. Phys. Rev. B 70(2), 024512 (2004). https://doi.org/10.1103/PhysRevB.70.024512

    Article  ADS  Google Scholar 

  35. E. Cheng, M.W. Cole, W.F. Saam, J. Treiner, Helium prewetting and nonwetting on weak-binding substrates. Phys. Rev. Lett. 67(8), 1007 (1991). https://doi.org/10.1103/physrevlett.67.1007

    Article  ADS  Google Scholar 

  36. K.S. Ketola, S. Wang, R.B. Hallock, Anomalous wetting of helium on cesium. Phys. Rev. Lett. 68(2), 201 (1992). https://doi.org/10.1103/physrevlett.68.201

    Article  ADS  Google Scholar 

  37. J. Klier, P. Stefanyi, A.F.G. Wyatt, Contact angle of liquid \(^4\)He on a Cs surface. Phys. Rev. Lett. 75(20), 3709 (1995). https://doi.org/10.1103/physrevlett.75.3709

    Article  ADS  Google Scholar 

  38. E. Rolley, C. Guthmann, Optical measurement of contact angle of liquid helium on cesium. J. Low Temp. Phys. 108(1–2), 1 (1997). https://doi.org/10.1007/bf02396813

    Article  ADS  Google Scholar 

  39. D. Ross, P. Taborek, J.E. Rutledge, Contact angle of superfluid helium droplets on a cesium surface. J. Low Temp. Phys. 111(1/2), 1 (1998). https://doi.org/10.1023/a:1022250222598

    Article  ADS  Google Scholar 

  40. M.S. Pettersen, W.F. Saam, Prediction of reentrant wetting of \(^3\)He-\(^4\)He mixtures on cesium. J. Low Temp. Phys. 90(3–4), 159 (1993). https://doi.org/10.1007/bf00681997

    Article  ADS  Google Scholar 

  41. M. Boninsegni, Thin helium film on a glass substrate. J. Low Temp. Phys. 159(3–4), 441 (2010). https://doi.org/10.1007/s10909-009-0143-1

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada. Computing support of ComputeCanada is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Boninsegni.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boninsegni, M. Thin \(^4\)He Films on Alkali Substrates: Where Do \(^3\)He Atoms Bind?. J Low Temp Phys 210, 93–102 (2023). https://doi.org/10.1007/s10909-022-02914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02914-6

Keywords

Navigation