Skip to main content
Log in

New Explanation of the Excitation Spectra of Conventional Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

It is shown that, in the conventional superconductors, there exist in addition to the discontinuous excitation spectrum of the BCS-theory, continuous (gap-less) excitation spectra due to bosons. Since above and below the transition temperature, TSC, the heat capacity of the superconducting elements exhibits power functions of absolute temperature, T = 0 is the only critical point. The superconducting transitions therefore are all within the fairly large critical range at the critical point T = 0. Typical of a critical range is short-range order. At TSC, the type of short-range order changes. While above TSC, the type of short-range order is not quite clear, the short-range ordered units below TSC are the Cooper-pairs. The observed power functions of absolute temperature result from the fact that the generally gap-less excitation spectra of the ballistically propagating bosons are given by simple power functions of wave-vector. As we know from Renormalization Group (RG) theory, in the vicinity of a critical point, including the critical point T = 0, the atomistic interactions are excluded from the dynamics. The gapped excitation spectrum of the Cooper-pairs is a typical atomistic excitation that is not relevant for the boson-defined zero-field heat capacity. It can reasonably be assumed that the relevant bosons below TSC are identical with the bosons giving rise to the universal linear-in-T electronic heat capacity above TSC, as it is typical for all metals. Ordering of these bosons at TSC entails the formation of Cooper-pairs. Arguments will be given that the bosons have to be identified with electric quadrupole radiation, generated by the non-spherical charge distributions in the soft zones between the metal atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Kleiner, W. Buckel, Superconductivity: An Introduction (Wiley-VCH, Weinheim, 2016)

    Google Scholar 

  2. K.G. Wilson, J. Kogut, Phys. Rep. 12C, 75 (1974)

    Article  ADS  Google Scholar 

  3. U. Köbler, J. Magn. Magn. Mater. 453, 17 (2018)

    Article  ADS  Google Scholar 

  4. U. Köbler, J. Magn. Magn. Mater. 546, 168839 (2022)

    Article  Google Scholar 

  5. U. Köbler, VYu. Bodryakov, Int. J. of Thermo. 18, 200 (2015)

    Article  Google Scholar 

  6. P. Heller, Rep. Prog. Phys. 30, 732 (1967)

    Article  ADS  Google Scholar 

  7. R.K. Pathria, Statistical Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1996)

    MATH  Google Scholar 

  8. A. Hoser, U. Köbler, Acta Phys. Pol. A 127, 350 (2015)

    Article  ADS  Google Scholar 

  9. J. Goldstone, A. Salam, S. Weinberg, Phys. Rev. 127, 965 (1962)

    Article  ADS  Google Scholar 

  10. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, 2008)

    Book  Google Scholar 

  11. U. Köbler, Int. J. of Thermo. 18, 277 (2015)

    Article  Google Scholar 

  12. U. Köbler, Int. J. of Thermo. 20, 210 (2017)

    Article  Google Scholar 

  13. W.S. Corak, M.P. Garfunkel, C.B. Satterthwaite, A. Wexler, Phys. Rev. 98, 1699 (1955)

    Article  ADS  Google Scholar 

  14. U. Köbler, A. Hoser, Experimental studies of Boson fields in solids (World Scientific, Singapore, 2018)

    Book  MATH  Google Scholar 

  15. U. Köbler, Int. J. of Thermo. 23, 59 (2020)

    Article  Google Scholar 

  16. C.B. Satterthwaite, Phys. Rev. 125, 873 (1962)

    Article  ADS  Google Scholar 

  17. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  Google Scholar 

  18. U. Köbler, Int. J. of Thermo. 24, 238 (2021)

    Article  Google Scholar 

  19. W. Meissner, R. Ochsenfeld, Naturwissenschaften 21, 787 (1933)

    Article  ADS  Google Scholar 

  20. B.J. Van Der Hoeven Jr, P.H. Keesom, Phys. Rev. 137, A103 (1965)

    Article  Google Scholar 

  21. Ch. Enss, S. Hunklinger, Low-temperature physics (Springer, Berlin, 2005)

    MATH  Google Scholar 

  22. J.E. Neighbor, J.F. Cochrane, C.A. Schiffman, Phys. Rev. 155, 384 (1967)

    Article  ADS  Google Scholar 

  23. C. Kittel, Introduction to solid-state physics (Wiley, New-York, 2005)

    MATH  Google Scholar 

  24. B.J. Van der Hoeven Jr, P.H. Keesom, Phys. Rev. 135, A631 (1964)

    Article  Google Scholar 

  25. B.J. Van der Hoeven Jr, P.H. Keesom, Phys. Rev. 134, A1320 (1964)

    Article  Google Scholar 

  26. H.A. Leupold, H.A. Boorse, Phys. Rev. 134, A1322 (1964)

    Article  ADS  Google Scholar 

  27. N.E. Phillips, Phys. Rev. 114, 676 (1959)

    Article  ADS  Google Scholar 

  28. A.M. Okaz, P.H. Keesom, Physics 69, 97 (1973)

    Google Scholar 

  29. N.E. Phillips, Phys. Rev. Lett. 1, 363 (1958)

    Article  ADS  Google Scholar 

  30. R. Radebaugh, P.H. Keesom, Phys. Rev. 149, 209 (1966)

    Article  ADS  Google Scholar 

  31. N.E. Phillips, Phys. Rev. 134, A385 (1964)

    Article  ADS  Google Scholar 

  32. D. White, C. Chou, H.L. Johnston, Phys. Rev. 109, 797 (1958)

    Article  ADS  Google Scholar 

  33. J.R. Clement, E.H. Quinnell, Phys. Rev. 92, 258 (1953)

    Article  ADS  Google Scholar 

  34. H.R. Oneal, N.E. Phillips, Phys. Rev. 137, A748 (1965)

    Article  ADS  Google Scholar 

  35. U. Köbler, Int. J. of Thermo. to be published

  36. P.I. Richards, M. Tinkham, Phys. Rev. 119, 575 (1960)

    Article  ADS  Google Scholar 

  37. B. Mühlschlegel, Z. Physik 155, 313 (1959)

    Article  ADS  Google Scholar 

  38. U. Köbler, Int. J. of Thermo. 23, 147 (2020)

    Article  Google Scholar 

  39. C. Probst, J. Wittig, Phys. Rev. Lett. 39, 1161 (1977)

    Article  ADS  Google Scholar 

  40. U. Köbler, J. Magn. Magn. Mater. 551, 169129 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

I express my deep respect to all of the ingenious experimentalists who have measured the high-precision superconducting heat capacity data that were a condition for the here achieved better understanding of the phenomenon of superconductivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Köbler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köbler, U. New Explanation of the Excitation Spectra of Conventional Superconductors. J Low Temp Phys 210, 113–128 (2023). https://doi.org/10.1007/s10909-022-02886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02886-7

Keywords

Navigation