Skip to main content
Log in

Berry Connection from Many-Body Wave Functions and Superconductivity: Calculations by the Particle Number Conserving Bogoliubov-De Gennes Equations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A fundamentally revised version of superconductivity theory has been put forward since the standard theory of superconductivity based on the BCS theory cannot explain superconductivity in cuprates discovered in 1986, and reexaminations on several experimental results on the conventional superconductors indicate the necessity for a fundamental revision. The revision is made on the origin of the superconducting phase variable, which is attributed to a Berry connection arising from many-body wave functions. With this revision, the theory can be cast into a particle number conserving formalism. We have developed a method to calculate superconducting states with the Berry connection using the particle number conserving version of the Bogoliubov-de Gennes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N., Schrieffer, J. R.: Phys. Rev. 108, 1175 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bogoliubov, N. N.: Sov. Phys. JETP 34, 41 (1958)

    Google Scholar 

  3. Anderson, P. W.: Phys. Rev. 110, 827 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  4. Anderson, P. W.: Phys. Rev. 112, 1900 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  5. Nambu, Y.: Phys. Rev. 117, 648 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bednorz, J. G., Müller, K. A.: Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  7. Kastner, M.A., Birgeneau, R.J., Shirane, G., Endoh, Y.: Rev. Mod. Phys. 70, 897 (1998). https://doi.org/10.1103/RevModPhys.70.897

    Article  ADS  Google Scholar 

  8. Emery, V. J., Kivelson, S. A.: Nature 374, 434 (1995)

    Article  ADS  Google Scholar 

  9. Ginzburg, V. L., Landau, L. D., Exsp, Z. h.: Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  10. Abrikosov, A. A.: SOV. Phys. JETP 5, 1174 (1957)

    Google Scholar 

  11. Bianconi, A., Saini, N. L., Lanzara, A., Missori, M., Rossetti, T., Oyanagi, H., Yamaguchi, H., Oka, K., Ito, T.: Phys. Rev. Lett. 76, 3412 (1996)

    Article  ADS  Google Scholar 

  12. Koizumi, H.: J. Supercond. Nov. Magn. 24, 1997 (2011)

    Article  Google Scholar 

  13. Koizumi, H.: J. Phys. Soc. Jpn. 77, 034712 (2008)

    Article  ADS  Google Scholar 

  14. Koizumi, H.: J. Phys. Chem. A 113, 3997 (2009)

    Article  Google Scholar 

  15. Koizumi, H.: J. Phys. A: Math. Theor. 43, 354009 (2010)

    Article  Google Scholar 

  16. Koizumi, H.: J. Phys. Soc. Jpn. 77, 104704 (2008)

    Article  ADS  Google Scholar 

  17. Koizumi, H.: J. Phys. Soc. Jpn. 77, 123708 (2008)

    Article  ADS  Google Scholar 

  18. Miyaki, S., Makoshi, K., Koizumi, H.: J. Phys. Soc. Jpn. 77, 034702 (2008)

    Article  ADS  Google Scholar 

  19. Tranquada, J. M., Woo, H., Perring, T. G., Goka, H., Gu, G. D., Xu, G., Fujita, M., Yamada, K.: Nature 429, 534 (2004)

    Article  ADS  Google Scholar 

  20. Hidekata, R., Koizumi, H., Supercond, J.: Nov. Magn. 24, 2253 (2011)

    Article  Google Scholar 

  21. Hirsch, J.: Phys. Scr. 80, 035702 (2009)

    Article  ADS  Google Scholar 

  22. Hirsch, J. E.: Phys. Rev. B 95, 014503 (2017)

    Article  ADS  Google Scholar 

  23. Hirsch, J. E.: Int. J. Modern Phys. B 32, 1850158 (2018)

    Article  ADS  Google Scholar 

  24. Hirsch, J. E.: EPL 130, 17006 (2020)

    Article  ADS  Google Scholar 

  25. Hirsch, J.E.: Phys. Script. 89(1), 015806 (2013). https://doi.org/10.1088/0031-8949/89/01/015806

    Article  ADS  Google Scholar 

  26. Koizumi, H.: J. Supercond. Nov. Magn. (2020) https://doi.org/10.1007/s10948-021-05827-9

  27. Wick, G. C., Wightman, A. S., Wigner, E. P.: Phys. Rev. D 1, 3267 (1970)

    Article  ADS  Google Scholar 

  28. Irkhin, V. Y., Katsnelson, M. I.: Phys. Lett. A 104, 163 (1984)

    Article  ADS  Google Scholar 

  29. Peierls, R.: J. Phys. A 24, 5273 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  30. Leggett, A. J.: Quantum Liquids: Bose Condensation And Cooper Pairing in Condensed- matter Systems. Oxford University Press, Oxford (2006)

  31. Koizumi, H.: J. Supercond. Nov. Magn. (2021) https://doi.org/10.1007/s10948-021-05905-y

  32. Koizumi, H., Tachiki, M., Supercond, J.: Nov. Magn. 28, 61 (2015)

    Article  Google Scholar 

  33. Murani, A., Bourlet, N., le Sueur, H., Portier, F., Altimiras, C., Esteve, D., Grabert, H., Stockburger, J., Ankerhold, J., Joyez, P.: Phys. Rev. X 10, 021003 (2020). https://doi.org/10.1103/PhysRevX.10.021003

    Google Scholar 

  34. Hakonen, P.J., Sonin, E.B.: Phys. Rev. X 11, 018001 (2021). https://doi.org/10.1103/PhysRevX.11.018001

    Google Scholar 

  35. Murani, A., Bourlet, N., le Sueur, H., Portier, F., Altimiras, C., Esteve, D., Grabert, H., Stockburger, J., Ankerhold, J., Joyez, P.: Phys. Rev. X 11, 018002 (2021). https://doi.org/10.1103/PhysRevX.11.018002

    Google Scholar 

  36. Koizumi, H.: J. Supercond. Nov. Magn. 33, 1697 (2020)

    Article  Google Scholar 

  37. Anderson, P. W.: The Theory of Superconductivity in the High-Tc Cuprates. Princeton University Press, Princeton (1997)

  38. Okazaki, A., Wakaura, H., Koizumi, H., Ghantous, M. A., Tachiki, M.: J. Supercond. Nov. Magn. 28, 3221 (2015)

    Article  Google Scholar 

  39. Riera, J. A.: Phys. Rev. B 88, 045102 (2013)

    Article  ADS  Google Scholar 

  40. Morisaki, T., Wakaura, H., Koizumi, H.: J. Phys. Soc. Jpn. 86(10), 104710 (2017)

    Article  ADS  Google Scholar 

  41. Zhang, F.C., Rice, T.M.: Phys. Rev. B 37, 3759 (1988). https://doi.org/10.1103/PhysRevB.37.3759

    Article  ADS  Google Scholar 

  42. Damascelli, A., Hussain, Z., Shen, Z. X.: Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  43. Car, R., Parrinello, M.: Phys. Rev. Lett. 55, 2471 (1985). https://doi.org/10.1103/PhysRevLett.55.2471

    Article  ADS  Google Scholar 

  44. Bohm, D.: Phys. Rev. 75, 502 (1949)

    Article  ADS  Google Scholar 

  45. Manabe, D., Koizumi, H.: J. Supercond. Nov. Magn. 32, 2303 (2019). https://doi.org/10.1007/s10948-018-4977-0

    Article  Google Scholar 

  46. Bloch, F.: Phys. Today 19(5), 27 (1966)

    Article  ADS  Google Scholar 

  47. London, F.: Superfluids, vol. 1. Wiley, New York (1950)

    MATH  Google Scholar 

  48. Koizumi, H.: EPL 131(3), 37001 (2020)

    Article  ADS  Google Scholar 

  49. Koizumi, H., Ishikawa, A.: Int. J. Modern Phys. B 34(31), 2030001 (2020). https://doi.org/10.1142/S0217979220300017

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Koizumi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koizumi, H., Ishikawa, A. Berry Connection from Many-Body Wave Functions and Superconductivity: Calculations by the Particle Number Conserving Bogoliubov-De Gennes Equations. J Supercond Nov Magn 34, 2795–2808 (2021). https://doi.org/10.1007/s10948-021-05991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05991-y

Keywords

Navigation