Skip to main content
Log in

Determination of Fractional Electron Capture Probabilities of 125I Using Metallic Magnetic Calorimeters

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Fractional electron capture probability ratios of 125I were measured using metallic magnetic calorimeters (MMCs). Due to the 4π geometry of the source embedded in the absorber, detection efficiency of nearly 99% was observed for K, L, M, and N capture events. The fractional capture probabilities were calculated from peak area ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source placed on one half of absorber (right)

Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Gastaldo et al., Eur. Phys. J. Special Topics 226, 1623–1694 (2017). https://doi.org/10.1140/epjst/e2017-70071-y

    Article  Google Scholar 

  2. B. Alpert et al., Holmes. Eur. Phys. J. C 75, 112 (2015). https://doi.org/10.1140/epjc/s10052-015-3329-5

    Article  Google Scholar 

  3. F. Buchegger et al., Eur J Nucl Med Mol Imaging 33, 1352–1363 (2006). https://doi.org/10.1007/s00259-006-0187-2

    Article  Google Scholar 

  4. K.A. Robertson, Comput. Math. Methods Med. 651475, 14 (2012). https://doi.org/10.1155/2012/651475

    Article  Google Scholar 

  5. R. Broda, P. Cassette, K. Kossert, Metrologia 44(4), S36 (2007). https://doi.org/10.1088/0026-1394/44/4/s06

    Article  Google Scholar 

  6. R. Robertson, Phys. Rev. C. (2015). https://doi.org/10.1103/PhysRevC.91.035504

    Article  Google Scholar 

  7. https://www.bipm.org/en/publications/monographies

  8. X. Mougeot, Appl. Radiat. Isot. 154, 108884 (2019). https://doi.org/10.1016/j.apradiso.2019.108884

    Article  Google Scholar 

  9. P.C.-O. Ranitzsch et al., J. Low Temp. Phys. 199, 441–450 (2020). https://doi.org/10.1007/s10909-019-02278-4

    Article  Google Scholar 

  10. M. Alotiby et al., Phys. Med. Biol. (2018). https://doi.org/10.1088/1361-6560/aab24b

    Article  Google Scholar 

  11. M. Alotiby et al., J. Electron Spectrosc. Relat. Phenom. 232, 73–82 (2019). https://doi.org/10.1016/j.elspec.2019.02.009

    Article  Google Scholar 

  12. A. Ku et al., Auger electrons for cancer therapy: a review. EJNMMI radiopharm. chem. 4, 27 (2019). https://doi.org/10.1186/s41181-019-0075-2

    Article  Google Scholar 

  13. M.-M. Bé et al., Table de Radionucléides 6, 2242–3 (2011)

    Google Scholar 

  14. H. Leutz, K. Ziegler, Nucl. Phys. 50, 648–656 (1964)

    Article  Google Scholar 

  15. K.M. Smith, G.M. Lewis, Nucl. Phys. 89, 561–564 (1966)

    Article  Google Scholar 

  16. V.D.M.L. Kalyani et al., Il Nuovo Cimento A 109(8), 1129–1133 (1996). https://doi.org/10.1007/BF02798818

    Article  Google Scholar 

  17. E. Der Mateosian, Phys. Rev. 92, 4 (1953)

    Article  Google Scholar 

  18. Karttunen et al., Nucl. Phys. A 131(1969), 343–352 (1969). https://doi.org/10.1016/0375-9474(69)90539-9

    Article  Google Scholar 

  19. J. Plch, J. Zderadička, Intensities of γ- and X-rays in the125I decay. Czech J. Phys. 24, 1311–1313 (1974). https://doi.org/10.1007/BF01589807

    Article  Google Scholar 

  20. F. Tolea, K.R. Baker, W.D. Schmidt-Ott et al., The electron capture decay of125I and145Pm. Z. Physik 268, 289–292 (1974). https://doi.org/10.1007/BF01669463

    Article  Google Scholar 

  21. E. Schönfeld, Appl. Radiat. Isot. 49, 1353 (1998)

    Article  Google Scholar 

  22. E. Schönfeld, H. Janßen, Nucl. Instrum. Methods. A 369, 527–533 (1996). https://doi.org/10.1016/S0168-9002(96)80044-1

    Article  Google Scholar 

  23. X. Mougeot, Appl. Radiat. Isot 134, 225–232 (2018). https://doi.org/10.1016/j.apradiso.2017.07.027

    Article  Google Scholar 

  24. K.E. Koehler, Low temperature microcalorimeters for decay energy spectroscopy. Appl. Sci. 11(9), 4044 (2021). https://doi.org/10.3390/app11094044

    Article  Google Scholar 

  25. Y.S. Jang, S.J. Lee, G.B. Kim et al., Development of decay energy spectroscopy for radionuclide analysis using cryogenic 4π measurements. J. Low Temp. Phys. 167, 967–972 (2012). https://doi.org/10.1007/s10909-012-0477-y

    Article  Google Scholar 

  26. M.P. Croce et al., First Measure. Nucl. Detona Debris Decay Energy Spectrosc. (2021). https://doi.org/10.48550/arXiv.2103.12215

    Article  Google Scholar 

  27. D.J. Mercer et al., Gamma and decay energy spectroscopy measurements of trinitite. Nucl. Technol. 207(sup1), S309–S320 (2021). https://doi.org/10.1080/00295450.2021.1922258

    Article  Google Scholar 

  28. F. Salvat et al., Penelope. Nuclear Energy Agency OECD (NEA) (2001). https://doi.org/10.1787/32da5043-en

    Article  Google Scholar 

  29. M. Loidl et al., J. Low Temp. Phys. 193, 1251 (2018). https://doi.org/10.1007/s10909-018-1933-0

    Article  Google Scholar 

  30. http://empir.npl.co.uk/metrommc/

  31. M. Paulsen et al., J. Instrum. 14, P08012 (2019). https://doi.org/10.1088/1748-0221/14/08/p08012

    Article  Google Scholar 

  32. L. Bockhorn et al., J. Low Temp. Phys. 199, 298–305 (2020). https://doi.org/10.1007/s10909-019-02274-8

    Article  Google Scholar 

  33. C. Le-Bret et al., J. Low Temp. Phys. 167, 985 (2012)

    Article  Google Scholar 

  34. Y. Ménesguen, M.-C. Lépy, Nucl. Instrum. Methods Phys. Res. A 1003, 165341 (2021). https://doi.org/10.1016/j.nima.2021.165341

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed as part of the EMPIR Project 17FUN02 MetroMMC. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Loidl, M. & Rodrigues, M. Determination of Fractional Electron Capture Probabilities of 125I Using Metallic Magnetic Calorimeters. J Low Temp Phys 209, 864–871 (2022). https://doi.org/10.1007/s10909-022-02851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02851-4

Keywords

Navigation