Skip to main content
Log in

Phonon-mediated Superconductivity in Two-dimensional MBP (M=Li, Na, Ti)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

These years, two-dimensional (2D) superconductors have attracted more and more attentions. The critical temperature (\(T_\mathrm{c}\)) of superconductors can be modified by hole/electron doping, atom adsorption, strain and other means, so as to realize superconductivity with higher \(T_\mathrm{c}\). In this paper, using first-principles calculations, we study the superconductivity of monolayer hexagonal boron phosphide (h-BP) by metal atoms adsorption. The electronic structure and electron-phonon coupling (EPC) of MBP (M=Li, Na, Ti) are studied. It is found that monolayer h-BP transforms from a semiconductor to a metal after metal atoms adsorption. Based on the conventional EPC mechanism, the coupling between electrons and the out-of-plane vibration of B atoms and P atoms contributes greatly to the EPC. For MBP (M=Li, Na, Ti), the calculated total EPC \(\lambda\) are 1.76, 0.64, and 1.54, and the corresponding \(T_\mathrm{c}\) are 26.38, 6.05, and 14.58 K, respectively. Thus, the predicted MBP (M=Li, Na, Ti) are new 2D superconductors which might be used in future superconducting electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Profeta, M. Calandra, F. Mauri, Nat. Phys. 8, 131 (2012)

    Article  Google Scholar 

  2. B. M. Ludbrook, G. Levy, P. Nigge. M. Zonno, M. Schneider, D. J. Dvorak. C. N. Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh, C. Stra\(\beta\)er, A. St\(\ddot{o}\)hr, S. Forti, C. R. Ast, U. Starke, A. Damascelli, Proc. Natl. Acad. Sci. USA 112, 11795 (2015)

  3. C. Si, Z. Liu, W.H. Duan, F. Liu, Phys. Rev. Lett. 111, 196802 (2013)

    Article  ADS  Google Scholar 

  4. H.Y. Lu, Y. Yang, L. Hao, W.S. Wang, L. Geng, M. Zheng, Y. Li, N. Jiao, P. Zhang, C.S. Ting, Phys. Rev. B 101, 214514 (2020)

    Article  ADS  Google Scholar 

  5. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 556, 43 (2018)

    Article  ADS  Google Scholar 

  6. Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, P. Jarillo-Herrero, Nature 556, 80 (2018)

    Article  ADS  Google Scholar 

  7. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Nature Chem. 8, 563 (2016)

    Article  ADS  Google Scholar 

  8. M. Gao, Q.Z. Li, X.W. Yan, J. Wang, Phys. Rev. B 95, 024505 (2017)

    Article  ADS  Google Scholar 

  9. Z. Wang, S. Zeng, Y. Zhao, X. Wang, J. Ni, Phys. Rev. B 104, 174519 (2021)

    Article  ADS  Google Scholar 

  10. Y. Zhao, C. Lian, S. Zeng, Z. Dai, S. Meng, J. Ni, Phys. Rev. B 100, 094516 (2019)

    Article  ADS  Google Scholar 

  11. D.F. Shao, W.J. Lu, H.Y. Lv, Y.P. Sun, Europhys. Lett. 108, 67004 (2014)

    Article  ADS  Google Scholar 

  12. X. Li, X. Zhang, A. Bergara, G. Gao, Y. Liu, G. Yang, Phys. Rev. B 105, 024504 (2022)

    Article  ADS  Google Scholar 

  13. Y.P. Li, L. Yang, H.D. Liu, N. Jiao, M.Y. Ni, N. Hao, H.Y. Lu, P. Zhang, Phys. Chem. Chem. Phys. 24, 9256 (2022)

    Article  Google Scholar 

  14. T.T. Yu, P.F. Gao, Y. Zhang, S.L. Zhang, Appl. Surf. Sci. 486, 281 (2019)

    Article  ADS  Google Scholar 

  15. S. Ullah, P.A. Denis, F. Sato, Appl. Surf. Sci. 471, 134 (2019)

    Article  ADS  Google Scholar 

  16. Z.Z. Zhou, H.J. Liu, D.D. Fan, G.H. Cao, C.Y. Sheng, Phys. Rev. B 99, 085410 (2019)

    Article  ADS  Google Scholar 

  17. J. Wu, J.-H. Li, Y.-X. Yu, Phys. Chem. Chem. Phys. 22, 7633 (2020)

    Article  Google Scholar 

  18. D. Cakir, D. Kecik, H. Sahin, E. Durgun, F.M. Peeters, Phys. Chem. Chem. Phys. 17, 13013 (2015)

    Article  Google Scholar 

  19. S. Wang, X. Wu, Chin. J. Chem. Phys. 28, 588 (2015)

    Article  Google Scholar 

  20. M. Xie, S. Zhang, B. Cai, Z. Zhu, Y. Zoua, H. Zeng, Nanoscale 8, 13407–13413 (2016)

    Article  ADS  Google Scholar 

  21. Z. Zhu, X. Cai, C. Niu, C. Wang, Y. Jia, Appl. Phys. Lett. 109, 153107 (2016)

    Article  ADS  Google Scholar 

  22. B. Zeng, M. Li, X. Zhang, Y. Yi, L. Fu, M. Long, J. Phys. Chem. C 120, 25037 (2016)

    Article  Google Scholar 

  23. L. Shi, P. Li, W. Zhou, T. Wang, K. Chang, H. Zhang, T. Kako, G. Liu, J. Ye, Nanomater. Energy 28, 158 (2016)

    Article  Google Scholar 

  24. H.R. Jiang, W. Shyy, M. Liu, L. Wei, M.C. Wu, T.S. Zhao, J. Mater. Chem. A 5, 672 (2017)

    Article  Google Scholar 

  25. Y. Kumashiro, K. Nakamura, T. Enomoto, M. Tanaka, J. Mater. Sci.: Mater. Electron. 22, 966–973 (2011)

    Google Scholar 

  26. G. Li, J.K.C. Abbott, J.D. Brasfield et al., Appl. Surf. Sci. 327, 7–12 (2015)

    Article  ADS  Google Scholar 

  27. B. Padavala, C.D. Frye, X. Wang et al., Cryst. Growth Des. 16(2), 981–987 (2016)

    Article  Google Scholar 

  28. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  29. P. Giannozzi, et al., J. Phys.: Condens. Matter 21, 395502 (2009), http://www.quantum-espresso.org

  30. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. W.L. McMillan, Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  33. R.C. Dynes, Solid State Commun. 10, 615 (1972)

    Article  ADS  Google Scholar 

  34. P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12074213, 11574108, and 12104253), the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01), and the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yan Lu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BT., Li, YP. & Lu, HY. Phonon-mediated Superconductivity in Two-dimensional MBP (M=Li, Na, Ti). J Low Temp Phys 210, 129–139 (2023). https://doi.org/10.1007/s10909-022-02841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02841-6

Keywords

Navigation