Skip to main content
Log in

Enhanced Electron–Phonon Coupling and Superconductivity in Two-dimensional BC2N via Lithium Deposition: a First-Principles Investigation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) superconductors are important both for the basic understanding of pairing mechanism and potential applications in nanosuperconducting quantum interference devices. In this work, we explore the phonon-mediated superconductivity of hole-doped and lithium-deposited monolayer BC2N by first-principles calculations. Our results reveal that the hole-doped planar BC2N cannot superconduct due to weak electron–phonon coupling (EPC) with λ = 0.07. When lithium is deposited on the monolayer, the EPC constant is enhanced significantly to 0.52 and the superconducting transition temperature Tc is determined to be 3.58 K. Because more phonons, in particular the out-of-plane modes, are triggered to participate in the EPC process, the Tc is higher than 1.4 K of Ca-deposited graphene, 1.3 K of Li-deposited stanene, and 3 K of doped WS2 and NbSe2. It is also found that tensile biaxial strain weakens the EPC and leads to a decreased superconducting transition temperature. Our findings will provide a new guideline for designing novel 2D superconductors and enrich the potential application of 2D BC2N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ayala, P., Arenal, R., Loiseau, A., Rubio, A., Pichler, T.: The physical and chemical properties of heteronanotubes. Rev. Mod. Phys. 82, 1843 (2010)

    ADS  Google Scholar 

  2. Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z., Storr, K., Balicas, L.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010)

    ADS  Google Scholar 

  3. Kouvetakis, J., Sasaki, T., Shen, C., Hagiwara, R., Lerner, M., Krishnan, K., Bartlett, N.: Novel aspects of graphite intercalation by fluorine and fluorides and new B/C, C/N and B/C/N materials based on the graphite network. Syn. Met. 34, 1–7 (1989)

    Google Scholar 

  4. Xie, J., Zhang, Z., Yang, D., Xue, D., Si, M.: Theoretical prediction of carrier mobility in few-layer BC2N. J. Phys. Chem. Lett. 5, 4073–4077 (2014)

    Google Scholar 

  5. Zhang, J., Zhang, Y., Huang, S., Lin, W., Chen, W.: BC2N/graphene heterostructure as a promising anode material for rechargeable li-ion batteries by density functional calculations. J. Phys. Chem. C. 123, 30809–30818 (2019)

    Google Scholar 

  6. Gökoğlu, G., Aktürk, E.: Oxygen adsorption on honeycomb BC2N monolayers. Mate. Lett. 106, 168–170 (2013)

    Google Scholar 

  7. Lin, C., Zhang, X., Rao, Z.: Theoretical prediction of thermal transport in BC2N monolayer. Nano Energy. 38, 249–256 (2017)

    Google Scholar 

  8. Lai, L., Lu, J.: Half metallicity in BC2N nanoribbons: stability, electronic structures, and magnetism. Nanoscale. 3, 2583–2588 (2011)

    ADS  Google Scholar 

  9. Lu, P., Zhang, Z., Guo, W.: Electronic structures of BC2N nanoribbons. J. Phys. Chem. C. 115, 3572–3577 (2011)

    Google Scholar 

  10. Ibañez-Azpiroz, J., Souza, I., de Juan, F.; Directional shift current in mirror-symmetric BC2N. Physical Review Research 2, 013263 (2020). https://doi.org/10.1103/PhysRevResearch.2.013263

  11. De Franceschi, S., Kouwenhoven, L., Schönenberger, C., Wernsdorfer, W.: Hybrid superconductor–quantum dot devices. Nat. Nanotechnol. 5, 703 (2010)

    ADS  Google Scholar 

  12. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    MathSciNet  MATH  ADS  Google Scholar 

  13. Profeta, G., Calandra, M., Mauri, F.: Phonon-mediated superconductivity in graphene by lithium deposition. Nat. Phys. 8, 131 (2012)

    Google Scholar 

  14. Xue, M., Chen, G., Yang, H., Zhu, Y., Wang, D., He, J., Cao, T.: Superconductivity in potassium-doped few-layer graphene. J. Am. Chem. Soc. 134, 6536–6539 (2012)

    Google Scholar 

  15. Wang, X., Chen, J.: Phonon-mediated superconductivity in charge doped and Li-deposited two dimensional C3N. Physica C. 558, 12–16 (2019)

    ADS  Google Scholar 

  16. Shimada, N.H., Minamitani, E., Watanabe, S.: Theoretical prediction of phonon-mediated superconductivity with Tc≈25 K in Li-intercalated hexagonal boron nitride bilayer. Appl. Phys. Express. 10, 093101 (2017)

    ADS  Google Scholar 

  17. Savini, G., Ferrari, A.C., Giustino, F.: First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. Phys. Rev. Lett. 105, 037002 (2010)

    ADS  Google Scholar 

  18. Ge, Y., Wan, W., Yang, F., Yao, Y.: The strain effect on superconductivity in phosphorene: a first-principles prediction. New J. Phys. 17, 35008–35016(35009) (2015)

    Google Scholar 

  19. Xiao, R., Shao, D., Lu, W., Lv, H., Li, J., Sun, Y.: Enhanced superconductivity by strain and carrier-doping in borophene: a first principles prediction. Appl. Phys. Lett. 109, 122604 (2016)

    ADS  Google Scholar 

  20. Ludbrook, B.M., Levy, G., Nigge, P., Zonno, M., Schneider, M., Dvorak, D.J., Veenstra, C.N., Zhdanovich, S., Wong, D., Dosanjh, P., Strasser, C., Stohr, A., Forti, S., Ast, C.R., Starke, U., Damascelli, A.: Evidence for superconductivity in Li-decorated monolayer graphene. Proc. Natl. Acad. Sci. U. S. A. 112, 11795–11799 (2015)

    ADS  Google Scholar 

  21. Lu, J.M., Zheliuk, O., Leermakers, I., Yuan, N.F.Q., Zeitler, U., Law, K.T., Ye, J.T.: Evidence for two-dimensional Ising superconductivity in gated MoS2. Science. 350, 1353 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  22. Yoshida, M., Ye, J., Nishizaki, T., Kobayashi, N., Iwasa, Y.: Electrostatic and electrochemical tuning of superconductivity in two-dimensional NbSe2 crystals. Appl. Phys. Lett. 108, 202602 (2016)

    ADS  Google Scholar 

  23. Liu, Y., Wang, Z., Zhang, X., Liu, C., Liu, Y., Zhou, Z., Wang, J., Wang, Q., Liu, Y., Xi, C.: Interface-induced Zeeman-protected superconductivity in ultrathin crystalline lead films. Phys Rev X. 8, 021002 (2018)

    Google Scholar 

  24. Cui, J., Li, P., Zhou, J., He, W.-Y., Huang, X., Yi, J., Fan, J., Ji, Z., Jing, X., Qu, F.: Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1 Td-MoTe2. Nat. Commun. 10, 1–8 (2019)

    ADS  Google Scholar 

  25. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature. 556, 43 (2018)

    ADS  Google Scholar 

  26. Paolo, G., Stefano, B., Nicola, B., Matteo, C., Roberto, C., Carlo, C., Davide, C., Guido, L.C., Matteo, C., Ismaila, D., Dal, C.A., de Stefano, G., Stefano, F., Guido, F., Ralph, G., Uwe, G., Christos, G., Anton, K., Michele, L., Layla, M.-S., Nicola, M., Francesco, M., Riccardo, M., Stefano, P., Alfredo, P., Lorenzo, P., Carlo, S., Sandro, S., Gabriele, S., Ari, P.S., Alexander, S., Paolo, U., Renata, M.W.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 21, 395502 (2009)

    Google Scholar 

  27. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  28. Methfessel, M., Paxton, A.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 40, 3616–3621 (1989)

    ADS  Google Scholar 

  29. Dynes, R.C.: McMillan’s equation and the Tc of superconductors. Solid State Commun. 10, 615–618 (1972)

    ADS  Google Scholar 

  30. McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968)

    ADS  Google Scholar 

  31. Allen, P.B., Dynes, R.C.: Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B. 12, 905–922 (1975)

    ADS  Google Scholar 

  32. Shao, Y., Wang, Q., Hu, L., Pan, H., Shi, X.: BC2N monolayers as promising anchoring materials for lithium-sulfur batteries: first-principles insights. Carbon. 149, 530–537 (2019)

    Google Scholar 

  33. Efetov, D.K., Kim, P.: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010)

    ADS  Google Scholar 

  34. Ge, Y.Z., Liu, A.Y.: Phonon-mediated superconductivity in electron-doped single-layer MoS2: a first-principles prediction. Phys. Rev. B. 87, 241408 (2013)

    ADS  Google Scholar 

  35. Castro, E.V., Ochoa, H., Katsnelson, M., Gorbachev, R., Elias, D., Novoselov, K., Geim, A., Guinea, F.: Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105, 266601 (2010)

    ADS  Google Scholar 

  36. Liao, B., Zhou, J., Qiu, B., Dresselhaus, M.S., Chen, G.: Ab initio study of electron-phonon interaction in phosphorene. Phys. Rev. B. 91, 235419 (2015)

    ADS  Google Scholar 

  37. Si, C., Liu, Z., Duan, W., Liu, F.: First-principles calculations on the effect of doping and biaxial tensile strain on electron-phonon coupling in graphene. Phys. Rev. Lett. 111, 196802 (2013)

    ADS  Google Scholar 

  38. Zhang, J.-J., Zhang, Y., Dong, S.: Protective layer enhanced the stability and superconductivity of tailored antimonene bilayer. Phy. Rev. Mater. 2, 126004 (2018)

    ADS  Google Scholar 

  39. Shaidu, Y., Akin-Ojo, O.: First principles predictions of superconductivity in doped stanene. Comput. Mater. Sci. 118, 11–15 (2016)

    Google Scholar 

  40. Zeng, S., Zhao, Y., Li, G., Ni, J.: Strongly enhanced superconductivity in doped monolayer MoS2 by strain. Phys. Rev. B. 94, 024501 (2016)

    ADS  Google Scholar 

  41. Lu, J., Zheliuk, O., Chen, Q., Leermakers, I., Hussey, N.E., Zeitler, U., Ye, J.: Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl. Acad. Sci. U. S. A. 115, 3551–3556 (2018)

    ADS  Google Scholar 

  42. Xi, X., Wang, Z., Zhao, W., Park, J.-H., Law, K.T., Berger, H., Forró, L., Shan, J., Mak, K.F.: Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139 (2016)

    Google Scholar 

Download references

Funding

The authors acknowledge the support from the National Natural Science Foundation of China (No. 11747008) and Guangxi Natural Science Foundation (No. 2019GXNSFBA245077).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jianyong Chen; writing—original draft preparation: Jianyong Chen; writing—review and editing: Jianyong Chen; supervision: Jianyong Chen.

Corresponding author

Correspondence to Jianyong Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J. Enhanced Electron–Phonon Coupling and Superconductivity in Two-dimensional BC2N via Lithium Deposition: a First-Principles Investigation. J Supercond Nov Magn 34, 391–398 (2021). https://doi.org/10.1007/s10948-020-05737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05737-2

Keywords

Navigation