Skip to main content
Log in

Many-Body State and Dynamic Behaviour of the Pair-Correlation Function of a Small Bose–Einstein Condensate Confined in a Ring Potential

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the many-body state and the static and the dynamic behaviour of the pair-correlation function of a Bose–Einstein condensate with a finite atom number, which is confined in a quasi-one-dimensional toroidal/annular potential, both for repulsive, and for attractive interactions. We link the dynamic pair-correlation function that we evaluate with the problem of quantum time crystals. For weak repulsive interatomic interactions and a finite number of atoms the pair-correlation function shows a periodic temporal behaviour, which disappears in the limit of a large atom number, in agreement with general arguments. Finally we provide some insight into older results of attractive interactions, where the time-crystalline behaviour exists only in the limit of a large atom number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The presented data are available on request from the authors.

Notes

  1. Very generally, from Eq. (20), when \(\Phi (0, 0)\) acts on \(|\Psi _1 \rangle\) an atom is taken out of the system. This operation creates a linear superposition of states (having various values of the angular momentum, but all of them having \(N-1\) atoms). When the exponential \(e^{i H t}\) acts on this superposition of states, each of these states will have an exponential \(e^{i {{\mathcal {E}}}_n t}\) (here we do not write explicitly the dependence of \({{\mathcal {E}}}_n\) on the atom number and on the angular momentum). The same will happen when the second exponential, \(e^{-i H t}\), acts on \(\Phi ^{\dagger }(\theta , 0) \Phi (\theta , 0) e^{i H t} \Phi (0, 0) | \Psi _1 \rangle\), which will give another exponential factor \(e^{-i {{\mathcal {E}}}_m t}\). If the energy spectrum is equidistant (for all values of the angular momentum, in general), these exponentials will involve an integer multiple of only one energy and as a result \(n^{(2)}(\theta , t; \theta '=0, t'=0)\) will be a periodic function (in time).

References

  1. F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012)

    Article  ADS  Google Scholar 

  2. A. Shapere, F. Wilczek, Phys. Rev. Lett. 109, 160402 (2012)

    Article  ADS  Google Scholar 

  3. P. Bruno, Phys. Rev. Lett. 110, 118901 (2013)

    Article  ADS  Google Scholar 

  4. F. Wilczek, Phys. Rev. Lett. 110, 118902 (2013)

    Article  ADS  Google Scholar 

  5. P. Bruno, Phys. Rev. Lett. 111, 029301 (2013)

    Article  ADS  Google Scholar 

  6. P. Bruno, Phys. Rev. Lett. 111, 070402 (2013)

    Article  ADS  Google Scholar 

  7. P. Noziéres, Eur. Lett. 103, 57008 (2013)

    Article  ADS  Google Scholar 

  8. H. Watanabe, M. Oshikawa, Phys. Rev. Lett. 114, 251603 (2015)

    Article  ADS  Google Scholar 

  9. K. Sacha, Phys. Rev. A 91, 033617 (2015)

    Article  ADS  Google Scholar 

  10. V. Khemani, A. Lazarides, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 116, 250401 (2016)

    Article  ADS  Google Scholar 

  11. D.V. Else, B. Bauer, C. Nayak, Phys. Rev. Lett. 117, 090402 (2016)

    Article  ADS  Google Scholar 

  12. F. Strocchi, C. Heissenberg. arXiv:1605.04188 (2016)

  13. N.Y. Yao, A.C. Potter, I.-D. Potirniche, A. Vishwanath, Phys. Rev. Lett. 118, 030401 (2017)

    Article  ADS  Google Scholar 

  14. A. Syrwid, J. Zakrzewski, K. Sacha, Phys. Rev. Lett. 119, 250602 (2017)

    Article  ADS  Google Scholar 

  15. D.V. Else, B. Bauer, C. Nayak, Phys. Rev. X 7, 011026 (2017)

    Google Scholar 

  16. P. Ohberg, E.M. Wright, Phys. Rev. Lett. 123, 250402 (2019)

    Article  ADS  Google Scholar 

  17. H. Watanabe, M. Oshikawa, T. Koma, J. Stat. Phys. 178, 926 (2020)

    Article  ADS  Google Scholar 

  18. A.S.A. Kosior, K. Sacha, Eur. Lett. 134, 66001 (2021)

    Article  Google Scholar 

  19. S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk, N.Y. Yao, E. Demler, M.D. Lukin, Nat. (Lond.) 543, 221 (2017)

    Article  ADS  Google Scholar 

  20. J. Zhang, P.W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A.C. Potter, A. Vishwanath, N.Y. Yao, C. Monroe, Nat. (Lond.) 543, 217 (2017)

    Article  ADS  Google Scholar 

  21. K. Sacha, J. Zakrzewski, Rep. Prog. Phys. 81, 016401 (2018)

    Article  ADS  Google Scholar 

  22. Vedika Khemania, Roderich Moessner, S. L. Sondhi, arXiv:1910.10745

  23. L. Guo, P. Liang, New J. Phys. 22, 075003 (2020)

    Article  ADS  Google Scholar 

  24. D.V. Else, C. Monroe, C. Nayak, N.Y. Yao, Ann. Rev. Cond. Mat. Phys. 11, 467 (2020)

    Article  ADS  Google Scholar 

  25. R.J. Glauber, Phys. Rev. 130, 2529 (1963)

    Article  ADS  Google Scholar 

  26. J. Javanainen, S.M. Yoo, Phys. Rev. Lett. 76, 161 (1996)

    Article  ADS  Google Scholar 

  27. L.D. Carr, C.W. Clark, W.P. Reinhardt, Phys. Rev. A 62, 063611 (2000)

    Article  ADS  Google Scholar 

  28. R. Kanamoto, H. Saito, M. Ueda, Phys. Rev. A 67, 013608 (2003)

    Article  ADS  Google Scholar 

  29. G.M. Kavoulakis, Phys. Rev. A 67, 011601(R) (2003)

    Article  ADS  Google Scholar 

  30. R. Kanamoto, L.D. Carr, M. Ueda, Phys. Rev. A 79, 063616 (2009)

    Article  ADS  Google Scholar 

  31. R. Dumke, L. Zehuang, J. Close, N. Robins, A. Weis, M. Mukherjee, G. Birk, C. Hufnage, L. Amico, M.G. Boshier, K. Dieckmann, W. Li, T.C. Killian, J. Opt. 18, 093001 (2016)

    Article  ADS  Google Scholar 

  32. L. Amico, G. Birkl, M. Boshier, L.-C. Kwek, New J. Phys. 19, 020201 (2017)

    Article  ADS  Google Scholar 

  33. J.A. Sauer, M.D. Barrett, M.S. Chapman, Phys. Rev. Lett. 87, 270401 (2001)

    Article  Google Scholar 

  34. S. Gupta, K.W. Murch, K.L. Moore, T.P. Purdy, D.M. Stamper-Kurn, Phys. Rev. Lett. 95, 143201 (2005)

    Article  ADS  Google Scholar 

  35. A.S. Arnold, C.S. Garvie, E. Riis, Phys. Rev. A 73, 041606(R) (2006)

    Article  ADS  Google Scholar 

  36. S.E. Olson, M.L. Terraciano, M. Bashkansky, F.K. Fatemi, Phys. Rev. A 76, 061404(R) (2007)

    Article  ADS  Google Scholar 

  37. C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 99, 260401 (2007)

    Article  ADS  Google Scholar 

  38. W.H. Heathcote, E. Nugent, B.T. Sheard, C.J. Foot, New J. Phys. 10, 043012 (2008)

    Article  ADS  Google Scholar 

  39. K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, New J. Phys. 11, 043030 (2009)

    Article  ADS  Google Scholar 

  40. B.E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, C.J. Foot, Phys. Rev. A 83, 043408 (2011)

    Article  ADS  Google Scholar 

  41. A. Ramanathan, K.C. Wright, S.R. Muniz, M. Zelan, W.T. Hill, C.J. Lobb, K. Helmerson, W.D. Phillips, G.K. Campbell, Phys. Rev. Lett. 106, 130401 (2011)

    Article  ADS  Google Scholar 

  42. S. Moulder, S. Beattie, R.P. Smith, N. Tammuz, Z. Hadzibabic, Phys. Rev. A 86, 013629 (2012)

    Article  ADS  Google Scholar 

  43. S. Beattie, S. Moulder, R.J. Fletcher, Z. Hadzibabic, Phys. Rev. Lett. 110, 025301 (2013)

    Article  ADS  Google Scholar 

  44. C. Ryu, K.C. Henderson, M.G. Boshier, New J. Phys. 16, 013046 (2014)

    Article  ADS  Google Scholar 

  45. P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz, W. von Klitzing, New J. Phys. 18, 075014 (2016)

    Article  ADS  Google Scholar 

  46. S. Eckel, J.G. Lee, F. Jendrzejewski, N. Murray, C.W. Clark, C.J. Lobb, W.D. Phillips, M. Edwards, G.K. Campbell, Nat. (Lond.) 506, 200 (2014)

    Article  ADS  Google Scholar 

  47. S. Eckel, F. Jendrzejewski, A. Kumar, C.J. Lobb, G.K. Campbell, Phys. Rev. X 4, 031052 (2014)

    Google Scholar 

  48. A. Kumar, R. Dubessy, T. Badr, C. De Rossi, Mathieu de Goër de Herve, Laurent Longchambon, and Hélène Perrin. Phys. Rev. A 97, 043615 (2018)

    Article  ADS  Google Scholar 

  49. S. Pandey, H. Mas, G. Drougakis, P. Thekkeppatt, V. Bolpasi, G. Vasilakis, K. Poulios, W. von Klitzing, Nat. (Lond.) 570, 205 (2019)

    Article  ADS  Google Scholar 

  50. A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, Science 342, 457 (2013)

    Article  ADS  Google Scholar 

  51. E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963)

    Article  ADS  Google Scholar 

  52. E.H. Lieb, Phys. Rev. 130, 1616 (1963)

    Article  ADS  Google Scholar 

  53. A.D. Jackson, G.M. Kavoulakis, C.J. Pethick, Phys. Rev. A 58, 2417 (1998)

    Article  ADS  Google Scholar 

  54. A.D. Jackson, G.M. Kavoulakis, B. Mottelson, S.M. Reimann, Phys. Rev. Lett. 86, 945 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

GMK wishes to thank Chris Pethick, Krzysztof Sacha, and Wolf von Klitzing for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kavoulakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roussou, A., Smyrnakis, J., Magiropoulos, M. et al. Many-Body State and Dynamic Behaviour of the Pair-Correlation Function of a Small Bose–Einstein Condensate Confined in a Ring Potential. J Low Temp Phys 210, 51–67 (2023). https://doi.org/10.1007/s10909-022-02831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02831-8

Keywords

Navigation