Skip to main content
Log in

Low-Frequency Magnetic Oscillations Induced by Strong Electron Correlations

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

To explain the low frequencies of quantum oscillations observed in lightly doped cuprates, we consider the two-dimension Hubbard model supplemented with a perpendicular magnetic field. For large Hubbard repulsions, the electron spectrum is investigated using the cluster perturbation theory. The obtained frequencies of magnetic oscillations at small deviations from half-filling are close to those observed experimentally, \(F\approx 500\) T. They stem from small Fermi surface pockets located in the nodal regions of the Brillouin zone. The pockets are formed by Fermi arcs and less intensive segments, which make the pockets nearly circular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.E. Sebastian, N. Harrison, G.G. Lonzarich, Rep. Progr. Phys. 75, 102501 (2012). https://doi.org/10.1088/0034-4885/75/10/102501

    Article  ADS  Google Scholar 

  2. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984)

    Book  Google Scholar 

  3. N. Doiron-Leyraud et al., Nature 447, 565 (2007). https://doi.org/10.1038/nature05872

    Article  ADS  Google Scholar 

  4. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003). https://doi.org/10.1103/RevModPhys.75.473

    Article  ADS  Google Scholar 

  5. A.J. Millis, M.R. Norman, Phys. Rev. B 76, 220503(R) (2007). https://doi.org/10.1103/PhysRevB.76.220503

    Article  ADS  Google Scholar 

  6. W.-Q. Chen, K.-Y. Yang, T.M. Rice, F.C. Zhang, Europhys. Lett. 82, 17004 (2008). https://doi.org/10.1209/0295-5075/82/17004

    Article  Google Scholar 

  7. V. Galitski, S. Sachdev, Phys. Rev. B 79, 134512 (2009). https://doi.org/10.1103/PhysRevB.79.134512

    Article  ADS  Google Scholar 

  8. A. Melikyan, O. Vafek, Phys. Rev. B 78, 020502(R) (2008). https://doi.org/10.1103/PhysRevB.78.020502

    Article  ADS  Google Scholar 

  9. T. Pereg-Barnea, H. Weber, G. Rafael, M. Franz, Nat. Phys. 6, 44 (2010). https://doi.org/10.1038/nphys1431

    Article  Google Scholar 

  10. S.E. Sebastian et al., Phys. Rev. Lett. 108, 196403 (2012). https://doi.org/10.1103/PhysRevLett.108.196403

    Article  ADS  Google Scholar 

  11. G. Grissonnanche et al., Nat. Communs. 5, 3280 (2014). https://doi.org/10.1038/ncomms4280

    Article  ADS  Google Scholar 

  12. S. Acheche, L.-F. Arsenault, A.-M.S. Tremblay, Phys. Rev. B 96, 235135 (2017). https://doi.org/10.1103/PhysRevB.96.235135

    Article  ADS  Google Scholar 

  13. A.A. Markov, G. Rohringer, A.N. Rubtsov, Phys. Rev. B 100, 115102 (2019). https://doi.org/10.1103/PhysRevB.100.115102

    Article  ADS  Google Scholar 

  14. J. Vučičević, R. Žitko, Phys. Rev. B 104, 205101 (2021). https://doi.org/10.1103/PhysRevB.104.205101

    Article  ADS  Google Scholar 

  15. A. Sherman, Phys. Lett. A 379, 1912 (2015). https://doi.org/10.1016/j.physleta.2015.05.023

    Article  ADS  Google Scholar 

  16. D. Sénéchal, D. Perez, M. Pioro-Landrière, Phys. Rev. Lett. 84, 522 (2000). https://doi.org/10.1103/PhysRevLett.84.522

    Article  ADS  Google Scholar 

  17. D. Sénéchal, D. Perez, D. Plouffe, Phys. Rev. B 66, 075129 (2002). https://doi.org/10.1103/PhysRevB.66.075129

    Article  ADS  Google Scholar 

  18. J. Hubbard, Proc. R. Soc. London, Ser. A 296, 82 (1967)

    Article  ADS  Google Scholar 

  19. R.O. Zaitsev, Sov. Phys. JETP 43, 574 (1976)

    ADS  Google Scholar 

  20. M.I. Vladimir, V.A. Moskalenko, Theor. Math. Phys. 82, 301 (1990). https://doi.org/10.1007/BF01029224

    Article  Google Scholar 

  21. W. Metzner, Phys. Rev. B 43, 8549 (1991). https://doi.org/10.1103/PhysRevB.43.8549

    Article  ADS  Google Scholar 

  22. S. Pairault, D. Sénéchal, A.-M.S. Tremblay, Eur. Phys. J. B 16, 85 (2000). https://doi.org/10.1007/s100510070253

    Article  ADS  Google Scholar 

  23. A. Sherman, J. Phys.: Condens. Matter 30, 195601 (2018). https://doi.org/10.1088/1361-648X/aaba0e

    Article  ADS  Google Scholar 

  24. R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962). https://doi.org/10.1143/JPSJ.17.1100

    Article  ADS  Google Scholar 

  25. A. Sherman, Phys. Scr. 95, 015806 (2020). https://doi.org/10.1088/1402-4896/ab401a

    Article  ADS  Google Scholar 

  26. M. Qin et al., Phys. Rev. X 10, 031016 (2020). https://doi.org/10.1103/PhysRevX.10.031016

    Article  Google Scholar 

  27. M. Vandelli et al., https://doi.org/10.48550/arXiv.2204.02116arXiv:2204.02116

  28. R. Peierls, Z. Phys. 80, 763 (1933)

    Article  ADS  Google Scholar 

  29. E. Brown, Phys. Rev. 133, A1038 (1964). https://doi.org/10.1103/PhysRev.133.A1038

    Article  ADS  Google Scholar 

  30. W.A. Atkinson, J.E. Sonier, Phys. Rev. B 77, 024514 (2008). https://doi.org/10.1103/PhysRevB.77.024514

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Sherman.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest. There are no other applicable declarations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherman, A. Low-Frequency Magnetic Oscillations Induced by Strong Electron Correlations. J Low Temp Phys 209, 96–107 (2022). https://doi.org/10.1007/s10909-022-02800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02800-1

Keywords

Navigation