Skip to main content
Log in

Sol–Gel Synthesis and Characterizations for La0.7Ca0.15Pb0.15CoO3 Perovskite Cobaltite for Optical and Magnetic Applications

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermal, microstructural, optical, and magnetic properties of La0.7Ca0.15Pb0.15CoO3 (abbreviated as LCPCO) cobaltite perovskite synthesized via sol–gel technique were investigated in this study. The TGA study reveals the completion of the crystallization pathway and the immediate formation of the sample. The obtained X-ray diffractogram with Rietveld refinement shows that the sample crystallizes in the rhombohedral structure with \(R\overline{3}c\) space group. Homogeneous particle distribution was observed from the SEM micrograph. From FTIR spectrum, LCPCO presents two absorption bands around ν1 = 415 cm−1 and ν2 = 574 cm−1 which are assigned to the O–Co–O bending vibration from the CoO6 octahedra in LaCoO3 perovskite, and Co–O stretching vibration, respectively. The UV–Vis absorbance spectrum reveals a remarkable visible-light absorption of the prepared sample with significantly lower band gap energy (Egd = 1.549 eV). Additionally, significantly lower coercivity was observed, making the LCPCO perovskite cobaltite a promising candidate for recording media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, Solid State Ion. 22, 241 (1987)

    Article  Google Scholar 

  2. P. Hjalmarsson, M. Søgaard, M. Mogensen, Solid State Ion. 179, 1422 (2008)

    Article  Google Scholar 

  3. A. Petric, P. Huang, F. Tietz, Solid State Ion. 135, 719 (2000)

    Article  Google Scholar 

  4. S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Ceram. Int. 40, 16041 (2014)

    Article  Google Scholar 

  5. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, J. Alloys Compd. 615, 553 (2014)

    Article  Google Scholar 

  6. W. Wei-Ran, X. Da-Peng, S. Wen-Hui, D. Zhan-Hui, X. Yan-Feng, S. Geng-Xin, Chin. Phys. Lett. 22, 2400 (2005)

    Article  ADS  Google Scholar 

  7. M. Tachibana, T. Yoshida, H. Kawaji, T. Atake, E. Takayama-Muromachi, Phys. Rev. B 77, 094402 (2008)

    Article  ADS  Google Scholar 

  8. J.A. Alonso, M.J. Martínez-Lope, C. de la Callea, V. Pomjakushin, J. Mater. Chem. 16, 1555 (2006)

    Article  Google Scholar 

  9. F. Capon, A. Boileau, C. Carteret, N. Martin, P. Boulet, J.F. Pierson, J. Appl. Phys. 114, 113510 (2013)

    Article  ADS  Google Scholar 

  10. Y. Tokura, Y. Okimoto, S. Yamaguchi, H. Taniguchi, T. Kimura, H. Takagi, Phys. Rev. B 58, R1699(R) (1998)

    Article  ADS  Google Scholar 

  11. R.F. Klie, J.C. Zheng, Y. Zhu, M. Varela, J. Wu, C. Leighton, Phys. Rev. Lett. 99, 047203 (2007)

    Article  ADS  Google Scholar 

  12. J. Fujioka, Y. Yamasaki, H. Nakao, R. Kumai, Y. Murakami, M. Nakamura, M. Kawasaki, Y. Tokura, Phys. Rev. Lett. 111, 027206 (2013)

    Article  ADS  Google Scholar 

  13. W.S. Choi, J.-H. Kwon, H. Jeen, J.E. Hamann-Borrero, A. Radi, S. Macke, R. Sutarto, F. He, G.A. Sawatzky, V. Hinkov, M. Kim, H.N. Lee, Nano Lett. 12, 4966 (2012)

    Article  ADS  Google Scholar 

  14. A. Podlesnyak, M. Russina, A. Furrer, A. Alfonsov, E. Vavilova, V. Kataev, B. Buchner, T. Strassle, E. Pomjakushina, K. Conder, D.I. Khomskii, Phys. Rev. Lett. 101, 247603 (2008)

    Article  ADS  Google Scholar 

  15. C. He, S. El-Khatib, J. Wu, J.W. Lynn, H. Zheng, J.F. Mitchell, C. Leighton, Europhys. Lett. 87, 27006 (2009)

    Article  ADS  Google Scholar 

  16. S. Singh, S.K. Pandey, Philos. Mag. 97(6), 451 (2017)

    Article  ADS  Google Scholar 

  17. A.S. Panfilov, G.E. Grechnev, I.P. Zhuravleva, A.A. Lyogenkaya, V.A. Pashchenko, B.N. Savenko, D. Novoselov, D. Prabhakaran, I.O. Troyanchuk, Low Temp. Phys. 44(4), 328 (2018)

    Article  ADS  Google Scholar 

  18. D. Phadtare, S. Kondawar, A. Athawale, C. Rode, Mol. Catal. 475, 110496 (2019)

    Article  Google Scholar 

  19. E. Muhumuza, P. Wu, T. Nan, L. Zhao, P. Bai, S. Mintova, Z. Yan, Ind. Eng. Chem. Res. 59(49), 21322 (2020)

    Article  Google Scholar 

  20. V.G. Sathey, S.K. Paranjpez, V. Sirugurix, A.V. Pimpaley, J. Phys. Condens. Matter 10, 4045 (1998)

    Article  ADS  Google Scholar 

  21. M. Kriener, C. Zobel, A. Reichl, J. Baier, M. Cwik, K. Berggold, H. Kierspel, O. Zabara, A. Freimuth, T. Lorenz, Phys. Rev. B 69, 094417 (2004)

    Article  ADS  Google Scholar 

  22. R. Kun, S. Populoh, L. Karvonen, J. Gumbert, A. Weidenkaff, M. Bussea, J. Alloys Compd. 579, 147 (2013)

    Article  Google Scholar 

  23. C. Zhang, H. Hen, N. Wang, H. Chen, D. Kong, Ceram. Int. 39, 3685 (2013)

    Article  Google Scholar 

  24. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63(12), 515 (2008)

    Article  ADS  Google Scholar 

  25. J. Xie, H. Wang, M. Duan, L. Zhang, Appl. Surf. Sci. 257(15), 6358 (2011)

    Article  ADS  Google Scholar 

  26. Z. Dai, L. Liu, G. Ying, M. Yuan, X. Ren, J. Magn. Magn. Mater. 434, 10 (2017)

    Article  ADS  Google Scholar 

  27. S. Gowreesan, A. Ruban Kumar, Appl. Phys. A 123, 689 (2017)

    Article  Google Scholar 

  28. S. El-Khatib, S. Bose, C. He, J. Kuplic, M. Laver, J.A. Borchers, Q. Huang, J.W. Lynn, J.F. Mitchell, C. Leighton, Phys. Rev. B 82, 100411(R) (2010)

    Article  ADS  Google Scholar 

  29. R. Ganguly, A. Maignan, C. Martin, M. Hervieu, B. Raveau, J. Phys. Condens. Matter 14, 8595 (2002)

    Article  ADS  Google Scholar 

  30. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  31. K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, H. Akamatsu, Y. Kumagai, F. Oba, P. Manuel, R. Fujikawa, S. Yoshida, M. Fukuda, K. Tanaka, Inorg. Chem. 56, 11113 (2017)

    Article  Google Scholar 

  32. R. Ganguly, M. Hervieu, N. Nguyen, A. Maignan, C. Martin, B. Raveau, J. Phys. Condens. Matter 13, 10911 (2001)

    Article  ADS  Google Scholar 

  33. B. Roy, S. Das, J. Alloys Compd. 509, 5537 (2011)

    Article  Google Scholar 

  34. L. Guo, X. Shen, X. Meng, Y. Feng, J. Alloys Compd. 490, 301 (2010)

    Article  Google Scholar 

  35. Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, J. Meng, J. Phys. Chem. B 112, 11292 (2008)

    Article  Google Scholar 

  36. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Mater. Lett. 65, 483 (2011)

    Article  Google Scholar 

  37. O.H. Hansteen, H. Fjellvag, B.C. Hauback, Powder neutron and X-ray diffraction study of La4CO3O10. Chem. Pap. 52(1), 7–11 (1998)

    Google Scholar 

  38. K. Kleveland, M.A. Einarsrud, T. Grande, J. Eur. Ceram. Soc. 20, 185 (2000)

    Article  Google Scholar 

  39. M. Radovic, S.A. Speakman, L.F. Allard, E.A. Payzant, E. Lara-Curzio, W.M. Kriven, J. Lloyd, L. Fegely, N. Orlovskaya, J. Power Sources 184, 77 (2008)

    Article  ADS  Google Scholar 

  40. O.H. Hansteen, H. Fjellvag, B.C. Hauback, J. Mater. Chem. 8(9), 2081 (1998)

    Article  Google Scholar 

  41. L. Jia, J. Li, W. Fang, H. Song, Q. Li, Y. Tang, Catal. Commun. 10, 1230 (2009)

    Article  Google Scholar 

  42. C.J. Benedict, A. Rao, G. Sanjeev, G.S. Okram, P.D. Babu, J. Magn. Magn. Mater. 397, 145 (2016)

    Article  ADS  Google Scholar 

  43. S. Zhou, L. He, S. Zhao, Y. Guo, J. Zhao, L. Shi, J. Phys. Chem. C 113, 13522 (2009)

    Article  Google Scholar 

  44. V.L. Mathe, R.B. Kamble, Mater. Res. Bull. 48, 1415 (2013)

    Article  Google Scholar 

  45. G.V.S. Rao, C.N.R. Rao, J.R. Ferraro, Appl. Spectrosc. 24, 436 (1970)

    Article  ADS  Google Scholar 

  46. M.S. Khalil, Mater. Sci. Eng. A 352, 64 (2003)

    Article  Google Scholar 

  47. V.A. Ferby, A.M.E. Raj, M. Bououdina, Appl. Phys. A 126, 909 (2020)

    Article  ADS  Google Scholar 

  48. S.M.H. Qaid, B.A. Al-Asbahi, Hamid M. Ghaithan, M.S. AlSalhi, A.S. Al Dwayyan, J. Colloid Interface Sci. 563, 426 (2020)

    Article  ADS  Google Scholar 

  49. R. Mguedla, A. Ben, J. Kharrat, O. Taktak, H. Souissi, S. Kammoun, K. Khirouni, W. Boujelben, Opt. Mater. 101, 109742 (2020)

    Article  Google Scholar 

  50. Gagandeep, K. Singh, B.S. Lark, H.S. Sahota, Nucl. Sci. Eng. 134 (2000) 208

  51. L. Jia, J. Li, W. Fang, Catal. Commun. 11, 87 (2009)

    Article  Google Scholar 

  52. S. Subudhi, A. Mahapatra, M. Mandal, S. Das, K. Sa, I. Alam, B.V.R.S. Subramanyam, J. Raiguru, P. Mahanandia, Integr. Ferroelectr. 205, 61 (2020)

    Article  Google Scholar 

  53. H. Tajizadegan, A. Heidary, O. Torabi, M.H. Golabgir, A. Jamshidi, Int. J. Appl. Ceram. Technol. 13, 289 (2016)

    Article  Google Scholar 

  54. P.A. Mangrulkar, V. Polshettiwar, N.K. Labhsetwar, R.S. Varma, S.S. Rayalu, Nanoscale 4, 5202 (2012)

    Article  ADS  Google Scholar 

  55. S.A. Moyez, S. Roy, J. Nanoparticle Res. 20, 5 (2017)

    Article  ADS  Google Scholar 

  56. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  57. S. Husain, A.O.A. Keelani, W. Khan, Nano-Struct. Nano-Objects 15, 17 (2018)

    Article  Google Scholar 

  58. N. Tounsi, A. Barhoumi, F.C. Akkari, M. Kanzari, H. Guermazi, S. Guermazi, Vacuum 121, 9 (2015)

    Article  ADS  Google Scholar 

  59. E.A. Davis, N.F. Mott, Philos. Mag. A 22, 903 (1970)

    Article  ADS  Google Scholar 

  60. D.M. Coutinho, V.M.S. Verenkar, J. Alloys Compd. 782, 392 (2019)

    Article  Google Scholar 

  61. M. Atif, M. Nadeem, J. Sol-Gel Sci. Technol. 72, 615 (2014)

    Article  Google Scholar 

  62. R.K.N. Kutty, P.R. Kasturi, J. Jaganath, S. Padmanapan, Y.S. Lee, D. Meyrick, R.K. Selvan, J. Mater. Sci. Mater. Electron. 30, 975 (2019)

    Article  Google Scholar 

  63. S. Ajmal, I. Bibi, F. Majid, S. Ata, K. Kamran, K. Jilani, S. Nouren, S. Kamal, A. Ali, M. Iqbal, J. Matter. Res. Technol. 8(5), 4831 (2019)

    Article  Google Scholar 

  64. B. Alzahrani, G. Akça, S. Hcini, M.L. Bouazizi, J. Supercond. Nov. Magn. 34, 507 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number 2021/01/18109.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raihane Charguia or Sobhi Hcini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charguia, R., Al Shammari, F., Hcini, S. et al. Sol–Gel Synthesis and Characterizations for La0.7Ca0.15Pb0.15CoO3 Perovskite Cobaltite for Optical and Magnetic Applications. J Low Temp Phys 209, 182–197 (2022). https://doi.org/10.1007/s10909-022-02792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02792-y

Keywords

Navigation