Skip to main content
Log in

Dependence of structural/morphological and magnetic properties of LaCoO3 nanoparticles prepared by citrate nitrate auto combustion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Perovskite LaCoO3 nanopowders were synthesized via solution auto-combustion chemical route, using lanthanum and cobalt nitrates as oxidants and citric acid as fuel. Qualitative and Quantitative phase analysis performed by Rietveld refinements indicated the presence of pure single LaCoO3 phase. From fit parameters, goodness of fit “S” parameter (close to 1) and the difference between the experimental and theoretical XRD patterns. FTIR spectra showed two characteristics bands at 408 and 589 cm−1 characteristics of metal oxygen bands vibration, thus confirming the formation of LaCoO3 phase, whereas the strong absorption band at 589 cm−1 was assigned to Co–O stretching vibration and O–Co–O deformation modes of LaCoO3 compound. SEM micrographs clearly revealed quite spherical particles with a mean size in the range 139–178 nm and high tendency to clustering, meanwhile EDAX analysis confirmed the corresponding chemical composition with homogeneous distribution of the constituent elements. A weak paramagnetic order is observed irrespective of F/O ratio, with slight increase of the effective magnetic moment with F/O ratio; 2.72–2.93 μB, due to the presence of more high spin states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.S. Verma, V.K. Jindal, ABX3-type Oxides and Halides: Their Structure and Physical Properties (Nova Science Publishers, Hauppauge, New York, United States, 2004–2018), pp. 463–479

    Google Scholar 

  2. K. Asish, B. Kundu, Raveau, Structural, Magnetic and Electron Transport Properties of Ordered-Disordered Perovskite Cobaltites (Nova Science Publishers, Hauppauge, New York, United States, 2004–2018), pp. 213–250

    Google Scholar 

  3. Z. Yang, Y. Huang, B. Dong, H.L. Li, S.Q. Shi, Sol–gel template synthesis and characterization of LaCoO3 nanowires. Appl. Phys. A 84, 117–122 (2006)

    Article  ADS  Google Scholar 

  4. S. Nakayam, M. Okazaki, Y.L. Aung, M. Sakamoto, Preparations of perovskite-type oxides LaCoO3 from three different methods and their evaluation by homogeneity, sinterability and conductivity. Solid State Ionics 158, 133–139 (2003)

    Article  Google Scholar 

  5. Y. Zhu, R. Tan, T. Yi, S. Ji, X. Ye, L. Cao, Preparation of nanosized LaCoO3 perovskite oxide using amorphous heteronuclear complex as a precursor at low temperature. J. Mater. Sci. 35, 5415–5420 (2000)

    Article  ADS  Google Scholar 

  6. D. Berger, V. Fruth, I. Jitaru, J. Schoonman, Synthesis and characterisation of La1−xSrxCoO3 with large surface area. Mater. Lett. 58, 2418–2422 (2004)

    Article  Google Scholar 

  7. L. Amelao, G. Bandoli, D. Barreca, M. Bettinelli, G. Bottaro, A. Caneschi, Synthesis and characterization of nanophasic LaCoO3 powders. Surf. Interface Anal. 34, 112–115 (2002)

    Article  Google Scholar 

  8. G. Sinquin, C. Petit, J.P. Hindermann, A. Kiennemann, Study of the formation of LaMO3 (M = Co, Mn) perovskites by propionates precursors: application to the catalytic destruction of chlorinated VOCs. Catal. Today 70, 183–196 (2001)

    Article  Google Scholar 

  9. M. Popa, J. Frantti, M. Kakihana, Characterization of LaMeO3 (Me: Mn Co, Fe) perovskite powders obtained by polymerizable complex method. Solid State Ion. 154–155, 135–141 (2002)

    Article  Google Scholar 

  10. T. Tatarchuk, A. Shyichuk, J. Lamkiewicz, J. Kowalik, Inversion degree, morphology and colorimetric parameters of cobalt aluminate nanopignments depending on reductant type in solution combustion synthesis. Ceram. Int. 46, 14674–14685 (2020)

    Article  Google Scholar 

  11. T. Tatarchuk, M. Naushad, J. Tomaszewska, P. Kosobucki, M. Myslin, H. Vasylyeva, P. Scigalski, Adsorption of Sr(II) ions and salicylic acid onto magnetic magnesium-zinc ferrites: isotherms and kinetic studies. Environ. Sci. Pollut. Res. 27, 26681–26693 (2020)

    Article  Google Scholar 

  12. J. Theerthagiri, G. Durai, T. Tatarchuk, M. Sumathi, P. Kuppusami, J. Qin, M.Y. Choi, Synthesis of hierarchial structured rare earth metal-doped Co3O4 by polymer combustion method for high performance electrochemical supercapacitor electrode materials. Ionics 26, 2051–2061 (2019)

    Article  Google Scholar 

  13. K.C. Patil, S.T. Aruna, T. Mimani, Combustion synthesis: an update. Curr. Opin. Solid State Mater. Sci. 6, 507–512 (2002)

    Article  ADS  Google Scholar 

  14. A.S. Mukasyan, C. Costello, K.P. Sherlock, D. Lafarga, A. Varma, Perovskite membranes by aqueous combustion synthesis: synthesis and properties. Sep. Purif. Technol. 25, 117–126 (2001)

    Article  Google Scholar 

  15. T. Mimani, K.C. Patil, Solution combustion synthesis of nanoscale oxides and their composites. Mater. Phys. Mech. 4, 134–137 (2001)

    Google Scholar 

  16. D. Berger, C. Matei, Rev. Roum. Chim. 50, 889–894 (2005)

    Google Scholar 

  17. J.T. Antonio, S.T. Monica, J.A. Renato, B. Carlos, P. Bergmann, Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles. J. Mater. Sci. 42, 4785–4791 (2007)

    Article  Google Scholar 

  18. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, Combustion synthesis of cobalt ferrite nanoparticles—Influence of fuel to oxidizer ratio. J. Alloys Compd. 514, 91–96 (2012)

    Article  Google Scholar 

  19. R. Elilarassi, G. Chandrasekaran, Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic applications. Optoelectron. Lett. 6, 6–10 (2010)

    Article  ADS  Google Scholar 

  20. D. Berger, N. van Landschoat, C. Ionica, F. Papa, V. Fruth, Synthesis of pure and doped lanthanum cobaltite by the combustion method. J. Optoelectron. Adv. Mater. 5, 719–724 (2003)

    Google Scholar 

  21. A. Barabauskas, D. Jasaitis, A. Kareiva, Characterization of sol-gel process in the Y–Ba–Cu–O acetate-tartrate system using IR spectroscopy. Vib. Spectrosc. 28, 263–275 (2002)

    Article  Google Scholar 

  22. J. Chen, Y. Li, Y. Wang, J. Yun, D. Cao, Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment. Mater. Res. Bull. 39, 185–194 (2004)

    Article  Google Scholar 

  23. M.L. Dinesha, H.S. Jayanna, S. Ashoka, G.T. Chandrappa, Temperature dependent electrical conductivity of Fe doped ZnO nanoparticles prepared by solution combustion method. J. Alloy. Compd. 485, 538–541 (2009)

    Article  Google Scholar 

  24. S. Zhou, L. Shi, J. Zhao, L. He, H. Yang, S. Zhang, Ferromagnetism in LaCoO3 nanoparticles. Phys. Rev. B 76, 172407 (2007)

    Article  ADS  Google Scholar 

  25. Shiming Zhou, Laifa He, Shuangyi Zhao, Yuqiao Guo, Jiyin Zhao, Lei Shi, Size-dependent structural and magnetic properties of LaCoO3 nanoparticles. J. Phys. Chem. C 113, 13522–13526 (2009)

    Article  Google Scholar 

  26. Yang Wang, Hong Jin Fan, Orbital ordering-driven ferromagnetism in LaCoO3 nanowires. J. Appl. Phys. 108, 053917 (2010)

    Article  ADS  Google Scholar 

  27. C. Kittel, Introduction to solid state physics, Chap. 14 & 15, 7th edn. (Wiley, New York, 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Anslin Ferby.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferby, V.A., Raj, A.M.E. & Bououdina, M. Dependence of structural/morphological and magnetic properties of LaCoO3 nanoparticles prepared by citrate nitrate auto combustion. Appl. Phys. A 126, 909 (2020). https://doi.org/10.1007/s00339-020-04085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04085-1

Keywords

Navigation