Skip to main content
Log in

Photo-Elasto-Thermodiffusion Waves of Fractional Heat Order Excited with Laser Short-Pulse Impact for Semiconductor Medium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this investigation, laser short-pulse heating is studied in an elastic-thermodiffusion (ETD) model. A fractional-order of the heat equation for strain photo-thermoelasticity theory is considered when the interactions inside the semiconductor elastic medium between the holes and electrons occur. The decaying period for the photo-generated processes is obtained via the generalized thermoelasticity theory. The solutions of the governing equations are obtained during thermoelastic (TD) and electronic (ED) deformation in one-dimensional (1D) space and under the Laplace domains. Afterward, the complete dimensionless quantities of physical fields with a complex inversion formula of the Laplace transform are obtained numerically according to the Fourier expansion under initial and boundary conditions. Comparisons are presented according to different parameters; time-fractional order, thermal memories, and the pulse intensity. Such parameters are illustrated for the main physical fields. Finally, silicon material is used to describe the wave propagations simulation inside the medium and is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The information applied in this research is ready from the authors at request.

Abbreviations

\(\lambda ,\,\,\mu \quad \quad \;\) :

Counterparts of Lame’s parameters,

\(n_{0}\) :

Equilibrium carrier concentration (electrons concentration)

\(h_{0}\) :

Equilibrium holes concentration

\(T_{0} \;\) :

Absolute temperature,

\(\gamma = (3\lambda + 2\mu )\alpha_{t}\) :

The volume coefficient of thermal expansion,

\(\sigma_{{{\text{ij}}}}\) :

Components of the stress tensor,

\({\uprho }\quad \quad\) :

Density of the medium,

\(\alpha_{t}\) :

The coefficient of linear thermal expansion

\(e = \frac{\partial u}{{\partial x}}\) :

Cubical dilatation,

\(\tau_{q} \;{\text{and}}\;\tau_{\theta }\) :

The thermal relaxation times (phase lag),

\(C_{e}\) :

Specific heat at constant strain of the medium,

\(K\) :

The thermal conductivity of the medium,

\(\tau^{*}\) :

The photogenerated carrier lifetime,

\(E_{g}\) :

The energy gap of the medium of semiconductor,

\(\delta_{n} = (2\mu + 3\lambda )d_{n}\) :

The electrons elastodiffusive parameter,

\(\delta_{h} = (2\mu + 3\lambda )d_{h}\) :

The holes elastodiffusive parameter,

\(d_{n}\) :

The coefficients of electronic deformation,

\(d_{h}\) :

The coefficients of hole deformation,

\(p\) :

The power intensity,

\(\delta\) :

The absorption coefficient,

\(\Omega\) :

Pulse parameter

References

  1. M.A. Biot, Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Lord, Y. Shulman, A generalized dynamical theory of Thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  ADS  Google Scholar 

  3. A.E. Green, K.A. Lindsay, Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  4. D.S. Chandrasekharaiah, Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  ADS  Google Scholar 

  5. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  ADS  Google Scholar 

  6. J. Sharma, V. Kumar, C. Dayal, Reflection of generalized thermoelastic waves from the boundary of a half-space. J. Therm. Stresses 26, 925–942 (2003)

    Article  Google Scholar 

  7. Kh. Lotfy, S. Abo-Dahab, Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci. 12(8), 1709–1719 (2015)

    Article  Google Scholar 

  8. M. Othman, Kh. Lotfy, The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci. 12(9), 2587–2600 (2015)

    Article  Google Scholar 

  9. B. Maruszewski, Electro-magneto-thermo-elasticity of extrinsic semiconductors, classical irreversible thermodynamic approach. Arch. Mech. 38, 71–82 (1986)

    MATH  Google Scholar 

  10. B. Maruszewski, Electro-magneto-thermo-elasticity of extrinsic semiconductors, extended irreversible thermodynamic approach. Arch. Mech. 38, 83–95 (1986)

    MATH  Google Scholar 

  11. B. Maruszewski, Coupled evolution equations of deformable semiconductors. Int. J. Engr. Sci. 25, 145–153 (1987)

    Article  Google Scholar 

  12. J. Sharma, J. Nath, N. Thakur, Plane harmonic elasto-thermodiffusive waves in semiconductor materials. J. Mech. Mater. Struct. 1(5), 813–835 (2006)

    Article  Google Scholar 

  13. A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors (Elsevier, United States, 1987)

    Google Scholar 

  14. D. Almond, P. Patel, Photothermal Science and Techniques (Springer, Berlin, 1996)

    Google Scholar 

  15. J. Gordon, R. Leite, R. Moore, S. Porto, J.R. Whinnery, Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501 (1964)

    Google Scholar 

  16. Kh. Lotfy, Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. SILICON 11(4), 1863–1873 (2019)

    Article  Google Scholar 

  17. K. Lotfy, R.S. Tantawi, Photo-thermal-elastic interaction in a functionally graded material (FGM) and magnetic field. Silicon 12(2), 295–303 (2020)

    Article  Google Scholar 

  18. Kh. Lotfy, A novel model of magneto photothermal diffusion (MPD) on polymer nano-composite semiconductor with initial stress. Waves Ran. Comp. Med (2019). https://doi.org/10.1080/17455030.2019.1566680

    Article  MathSciNet  Google Scholar 

  19. L. Yong-Feng, Square-shaped temperature distribution induced by a Gaussian-shaped laser beam. Appl. Surf. Sci. 81(3), 357–364 (1994)

    Article  ADS  Google Scholar 

  20. K. Aldwoah, K. Lotfy, A. AbdelwahebMhemdi, El-Bary, A novel magneto-photo-elasto-thermodiffusion electrons-holes model of excited semiconductor. Case Stud. Thermal Eng. 32, 101877 (2022)

    Article  Google Scholar 

  21. M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism. Pure App. Geoph. 91, 134–147 (1971)

    Article  ADS  Google Scholar 

  22. M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids. Rivista del Nuovo cimento 1, 161–198 (1971)

    Article  ADS  Google Scholar 

  23. M. Caputo, Vibrations of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56, 897–904 (1974)

    Article  ADS  Google Scholar 

  24. Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 28, 83–102 (2005)

    Article  MathSciNet  Google Scholar 

  25. Yu.N. Rabotnov, Creep of Structural Elements (Nauka, Moscow, 1966). ([in Russian])

    MATH  Google Scholar 

  26. F. Mainardi, Applications of fractional calculus in mechanics, in Transforms Method and Special Functions. ed. by P. Rusev, I. Dimovski, V. Kiryakova (Sofia, Bulgarian Academy of Sciences, 1998), pp. 309–334

    Google Scholar 

  27. M.A. Ezzat, Theory of fractional order in generalized thermoelectric MHD. Appl. Math. Model. 35, 4965–4978 (2011)

    Article  MathSciNet  Google Scholar 

  28. Kh. Lotfy, A novel solution of fractional order heat equation for photothermal waves in a semiconductor medium with a spherical cavity. Chaos, Solitons Fractals 99, 233–242 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Hobiny, F. Alzahrani, I. Abbas, M. Marin, The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4), 602 (2020). https://doi.org/10.3390/sym12040602

    Article  ADS  Google Scholar 

  30. M. Othman, S. Said, M. Marin, A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. Int. J. Numer. Meth. Heat Fluid Flow 29(12), 4788–4806 (2019)

    Article  Google Scholar 

  31. M. Marin, M. Lupu, On harmonicvibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4(5), 507–518 (1998)

    Article  MathSciNet  Google Scholar 

  32. M. Marin, G. Stan, Weak solutions in Elasticity of dipolar bodies with stretch. Carpathian J. Math. 29(1), 33–40 (2013)

    Article  MathSciNet  Google Scholar 

  33. M. Marin, M. Othman, I. Abbas, An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)

    Article  Google Scholar 

  34. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  35. M. Marin, A domain of influence theorem for microstretch elastic materials. Nonlinear Anal. RWA. 11(5), 3446–3452 (2010)

    Article  MathSciNet  Google Scholar 

  36. M. Marin, A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal. RWA 11(4), 2436–2447 (2010)

    Article  MathSciNet  Google Scholar 

  37. I. Abbas, M. Marin, Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse. Iran. J. Sci. Technol.-Trans. Mech. Eng. 42(1), 57–71 (2018)

    Article  Google Scholar 

  38. H. Youssef, A. El-Bary, Two-temperature generalized thermoelasticity with variable thermal conductivity. J. Therm. Stresses 33, 187–201 (2010)

    Article  Google Scholar 

  39. I. Abbas, F. Alzahranib, A. Elaiwb, A DPL model of photothermal interaction in a semiconductor material. Waves Random Complex Media 29, 328–343 (2019)

    Article  Google Scholar 

  40. S. Mondal, A. Sur, Photo-thermo-elastic wave propagation in anorthotropic semiconductor with a spherical cavity and memory responses. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2019.1705426

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Princess Nourah bint Abdulrahman University for fund this research under Researchers Supporting Project number (PNURSP2022R154 ) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors are thankful to Taif University and Taif University researchers supporting project number (TURSP-2020/160), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

KL: Conceptualization, Methodology, AE: Software, Data curation, MM: Writing- Original draft preparation. SE: Supervision, Visualization, Investigation, Software, Validation. AM: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Kh. Lotfy.

Ethics declarations

Conflict of interest

The authors have declared that no Competing Interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sapa, S., Mohamed, M.S., Lotfy, K. et al. Photo-Elasto-Thermodiffusion Waves of Fractional Heat Order Excited with Laser Short-Pulse Impact for Semiconductor Medium. J Low Temp Phys 209, 124–143 (2022). https://doi.org/10.1007/s10909-022-02781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02781-1

Keywords

Navigation