Skip to main content
Log in

Operational Optimization to Maximize Dynamic Range in EXCLAIM Microwave Kinetic Inductance Detectors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Microwave Kinetic Inductance Detectors (MKIDs) are highly scalable detectors that have demonstrated nearly background-limited sensitivity in the far-infrared from high-altitude balloon-borne telescopes and space-like laboratory environments. In addition, the detectors have a rich design space with many optimizable parameters, allowing high sensitivity measurements over a wide dynamic range. For these reasons, MKIDs were chosen for the Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM), a balloon-borne telescope targeting nearly background-limited performance in a high-altitude atmospheric environment from 420 to 540 GHz. We describe MKID optimization in the specific context of EXCLAIM and provide general results that apply to broader applications. Extending the established approach of tone frequency tracking, we show that readout power optimization enables significant, further improvement in dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Baselmans, J. Bueno, S.J. Yates, O. Yurduseven, N. Llombart, K. Karatsu, A. Baryshev, L. Ferrari, A. Endo, D. Thoen et al., A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors. Astron. Astrophys. 601, A89 (2017)

    Article  Google Scholar 

  2. C.M. Bradford, B.A. Cameron, B.D. Moore, S. Hailey-Dunsheath, E.G. Amatucci, D.C. Bradley, J.A. Corsetti, D.T. Leisawitz, M.J. DiPirro, J.G. Tuttle et al., Origins survey spectrometer: revealing the hearts of distant galaxies and forming planetary systems with far-ir spectroscopy. J. Astron. Telescopes Instrum. Syst. 7(1), 011017 (2021)

    Google Scholar 

  3. C. Carilli, F. Walter, Cool gas in high-redshift galaxies. Ann. Rev. Astron. Astrophys. 51, 105–161 (2013)

    Article  Google Scholar 

  4. G. Cataldo, P. A. Ade, C. J. Anderson, A. Barlis, E. M. Barrentine, N. G. Bellis, A. D. Bolatto, P. C. Breysse, B. T. Bulcha, J. A. Connors, et al., Overview and status of exclaim,the experiment for cryogenic large-aperture intensity mapping. In Ground-based and Airborne Telescopes VIII, 11445, 1144524. International Society for Optics and Photonics, 2020

  5. J.-J. Chang, D. Scalapino, Nonequilibrium superconductivity. J. Low Temp. Phys. 31(1), 1–32 (1978)

    Article  Google Scholar 

  6. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays. Nature 425(6960), 817–821 (2003)

    Article  Google Scholar 

  7. D. Flanigan, B.R. Johnson, M.H. Abitbol, S. Bryan, R. Cantor, P. Day, G. Jones, P. Mauskopf, H. McCarrick, A. Miller et al., Magnetic field dependence of the internal quality factor and noise performance of lumped-element kinetic inductance detectors. Appl. Phys. Lett. 109(14), 143503 (2016)

    Article  Google Scholar 

  8. J. Gao. The physics of superconducting microwave resonators. PhD thesis, California Institute of Technology, 2008. http://thesis.library.caltech.edu/2530

  9. J. Glenn, C.M. Bradford, E. Rosolowsky, R. Amini, K. Alatalo, L. Armus, A.J. Benson, T.-C. Chang, J. Darling, P.K. Day et al., Galaxy evolution probe. J. Astron. Telescopes Instrum. Syst. 7(3), 034004 (2021)

    Google Scholar 

  10. D. Goldie, S. Withington, Non-equilibrium superconductivity in quantum-sensing superconducting resonators. Supercond. Sci. Technol. 26(1), 015004 (2012)

    Article  Google Scholar 

  11. S. Gordon, A. Sinclair, P. Mauskopf, G. Coppi, M. Devlin, B. Dober, L. Fissel, N. Galitzki, J. Gao, J. Hubmayr et al., Preflight detector characterization of blast-tng. J. Low Temp. Phys. 200(5), 400–406 (2020)

    Article  Google Scholar 

  12. T. Guruswamy, D. Goldie, S. Withington, Quasiparticle generation efficiency in superconducting thin films. Supercond. Sci. Technol. 27(5), 055012 (2014)

    Article  Google Scholar 

  13. J. R. Hoh, A. Sinclair, R. Stephenson., Maximizing dynamic range of microwave kinetic inductance detectors through high-speed tone tracking. In J. Zmuidzinas and J.-R. Gao, editors, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, volume 11453. (International Society for Optics and Photonics, SPIE, 2020) https://doi.org/10.1117/12.2559899

  14. E. D. Kovetz, M. P. Viero, A. Lidz, L. Newburgh, M. Rahman, E. Switzer, M. Kamionkowski, J. Aguirre, M. Alvarez, J. Bock, et al. Line-intensity mapping: 2017 status report. arXiv preprintarXiv:1709.09066, 2017

  15. A. Kozorezov, A. Volkov, J. Wigmore, A. Peacock, A. Poelaert, R. Den Hartog, Quasiparticle-phonon downconversion in nonequilibrium superconductors. Phys. Rev. B 61(17), 11807 (2000)

    Article  Google Scholar 

  16. D. Leisawitz, E. G. Amatucci, L. N. Allen, J. W. Arenberg, L. Armus, C. Battersby, J. M. Bauer, P. Beltran, D. J. Benford, D. Burgarella, et al. (2021) Origins space telescope: baseline mission concept. J. Astron. Telescopes Instrum. Syst. 7(1)

  17. A. Lowitz, E. Barrentine, S. Golwala, P. Timbie, A comparison of fundamental noise in kinetic inductance detectors and transition edge sensors for millimeter-wave applications. J. Low Temp. Phys. 176(3), 504–510 (2014)

    Article  Google Scholar 

  18. S. Masi, P. De Bernardis, A. Paiella, F. Piacentini, L. Lamagna, A. Coppolecchia, P. Ade, E. Battistelli, M. Castellano, I. Colantoni et al., Kinetic inductance detectors for the olimpo experiment: in-flight operation and performance. J. Cosmol. Astropart. Phys. 2019(07), 003 (2019)

    Article  Google Scholar 

  19. P. Mauskopf, Transition edge sensors and kinetic inductance detectors in astronomical instruments. Publ. Astron. Soc. Pac. 130(990), 082001 (2018)

    Article  Google Scholar 

  20. M. Mirzaei, E. M. Barrentine, B. T. Bulcha, G. Cataldo, J. A. Connors, N. Ehsan, T. M. Essinger-Hileman, L. A. Hess, S. H. Moseley, J. W. Mugge-Durum, et al. \(\mu\)-spec spectrometers for the exclaim instrument. In Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, Vol 11453, (International Society for Optics and Photonics, 2020)

  21. R. Stephenson. paper in preparation

  22. L. Swenson, P. Day, B. Eom, H. Leduc, N. Llombart, C. McKenney, O. Noroozian, J. Zmuidzinas, Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime. J. Appl. Phys. 113(10), 104501 (2013)

    Article  Google Scholar 

  23. E.R. Switzer, E.M. Barrentine, G. Cataldo, T. Essinger-Hileman, P.A. Ade, C.J. Anderson, A. Barlis, J. Beeman, N. Bellis, A.D. Bolatto et al., Experiment for cryogenic large-aperture intensity mapping: instrument design. J. Astron. Telescopes Instrum. Syst. 7(4), 044004 (2021)

    Google Scholar 

  24. G. Ulbricht, M. De Lucia, E. Baldwin, Applications for microwave kinetic induction detectors in advanced instrumentation. Appl. Sci. 11(6), 2671 (2021)

    Article  Google Scholar 

  25. J. van Rantwijk, M. Grim, D. van Loon, S. Yates, A. Baryshev, J. Baselmans, Multiplexed readout for 1000-pixel arrays of microwave kinetic inductance detectors. IEEE Trans. Microw. Theory Tech. 64(6), 1876–1883 (2016)

    Article  Google Scholar 

  26. J. Zmuidzinas, Thermal noise and correlations in photon detection. Appl. Opt. 42(25), 4989–5008 (2003)

    Article  Google Scholar 

  27. J. Zmuidzinas, Superconducting microresonators: Physics and applications. Annu. Rev. Condens. Matter Phys. 3(1), 169–214 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a 5-year NASA Astrophysics Research and Analysis (APRA 17-APRA17-0077) grant and NASA-Goddard Internal Research and Development funds, and TMO acknowledges support from the NASA-Goddard internship program and the UW-Madison graduate program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor M. Oxholm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oxholm, T.M., Switzer, E.R., Barrentine, E.M. et al. Operational Optimization to Maximize Dynamic Range in EXCLAIM Microwave Kinetic Inductance Detectors. J Low Temp Phys 209, 1038–1046 (2022). https://doi.org/10.1007/s10909-022-02760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02760-6

Keywords

Navigation